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Abstract

Because of the complexity and variety of parallel archi-
tectures, an efficient machine-independent parallel pro-
gramming model is needed to make parallel comput-
ing truly usable for scientific programmers. We believe
that Fortran D, a version of Fortran enhanced with data
decomposition specifications, can provide such a pro-
gramming model. This paper presents the design of
a prototype Fortran D compiler for the iPSC/860, a
MIMD distributed-memory machine. Issues addressed
include data decomposition analysis, guard introduc-
tion, communications generation and optimization, pro-
gram transformations, and storage assignment. A test
suite of scientific programs will be used to evaluate the
effectiveness of both the compiler technology and pro-
gramming model for the Fortran D compiler.

1 Introduction

It is widely recognized that parallel computing repre-
sents the only plausible way to continue to increase the
computational power available to computational scien-
tists and engineers. However, it is not likely to be a
success unless parallel computers are as easy to use as
the conventional vector supercomputers of today. A
major component of the success of vector supercom-
puters is the ability to write machine-independent vec-
tor programs in a subdialect of Fortran. Advances in
compiler technology, especially automatic vectorization,
have made it possible for the scientist to structure For-
tran loops according the rules of “vectorizable style”
[Wol89, CKK89], which are well understood, and ex-
pect the resulting program to be compiled to efficient
code on any vector machine.

Compare this with the current situation for parallel
machines. The scientist wishing to use such a machine
must rewrite the program in some dialect of Fortran
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with extensions that explicitly reflect the architecture of
the underlying machine, such as message-passing prim-
itives for distributed-memory machines or multidimen-
sional vector operations for synchronous data-parallel
machines. In addition to being a lot of work, this con-
version is daunting because the scientist risks losing his
investment when the next high-end parallel machine re-
quires a different set of extensions.

We are left with the question: Can this problem be
overcome? In other words, is it possible to identify a
subdialect of Fortran from which efficient parallel pro-
grams can be generated by a new and possibly more so-
phisticated compiler technology? Researchers working
in the area, including ourselves, have concluded that this
is not possible in general. Parallel programming s a dif-
ficult task in which many tradeoffs must be weighed. In
converting from a Fortran program, the compiler simply
is not able to always do a good job of picking the best
alternative in every tradeoff, particularly since it must
work solely with the text of the program. As a result,
the programmer may need to add additional informa-
tion to the program for it to be correctly and efficiently
parallelized.

But in accepting this conclusion, we must be care-
ful not to give up prematurely on the goal of sup-
porting machine-independent parallel programming. In
other words, if we extend Fortran to include information
about the parallelism available in a program, we should
not make those extensions dependent on any particu-
lar parallel machine architecture. From the compiler
technologist’s perspective, we need to find a suitable
language for expressing parallelism and compiler tech-
nology that will translate this language to efficient pro-
grams on different parallel machine architectures.

Parallel Programming Models

Figure 1 depicts four different machine types and the
dialect of Fortran commonly used for programming on
each of them: Fortran 77 for the sequential machine,
Fortran 90 for the SIMD parallel machine (e.g., the
TMC Connection Machine), message-passing Fortran
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Figure 1: Fortran Dialects and Machine Architectures

for the MIMD distributed-memory machine (e.g., the
Intel iPSC/860) and Parallel Computer Forum (PCF)
Fortran [Lea90] for the MIMD shared-memory machine
(e.g., the BBN TC2000 Butterfly). Each of these lan-
guages seems to be a plausible candidate for use as a
machine-independent parallel programming model.

Research on automatic parallelization has already
shown that Fortran is unsuitable for general parallel
programming. However, message-passing Fortran looks
like a promising candidate—it should be easy to im-
plement a run-time system that simulates distributed
memory on a shared-memory machine by passing mes-
sages through shared memory. Unfortunately, most sci-
entific programmers reject this alternative because pro-
gramming in message-passing Fortran is difficult and
tedious. In essence, this would be reduction to the low-
est common denominator: programming every machine
would be equally hard.

Starting with PCF Fortran is more promising. In tar-
geting this language to a distributed-memory machine,
the key intellectual step is determining the data decom-
position across the various processors. It seems plausi-
ble that we might be able to use the parallel loops in
PCF Fortran to indicate which data structures should
be partitioned across the processors—data arrays ac-
cessed on different iterations of a parallel loop should
probably be distributed. So what is wrong with starting
from PCF Fortran? The problem is that the language is
nondeterministic. If the programmer inadvertently ac-
cesses the same location on different loop iterations, the

result can vary for different execution schedules. Hence
PCF Fortran programs will be difficult to develop and
require complex debugging systems.

Fortran 90 is more promising, because it is a deter-
ministic language. The basic strategy for compiling it to
different machines is to block the multidimensional vec-
tor operations into submatrix operations, with different
submatrices assigned to different processors. We believe
that this approach has a good chance of success. In fact,
we are participating in a project with Geoffrey Fox at
Syracuse to pursue this approach. However, there are
questions about the generality of this strategy. SIMD
machines are not yet viewed as general-purpose parallel
computers. Hence, the programs that can be effectively
represented in Fortran 90 may be only a strict subset
of all interesting parallel programs. We would still need
some way to express those programs that are not well-
suited to Fortran 90.

Machine-Independent Programming Strategy

For these reasons, we have chosen a different approach,
one that introduces a new set of language extensions to
Fortran. We believe that specifying the data decompo-
sition is the most important intellectual step in develop-
ing large data-parallel scientific programs. Most paral-
lel programming languages, however, are inadequate in
this regard because they only provide constructs to ex-
press functional parallelism [PB90]. Hence, we designed
a language that extends Fortran by introducing con-
structs that specify data decompositions. We call the
extended language Fortran D, for obvious reasons. Fig-
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Figure 2: Machine-Independent Programming Strategy Using Fortran D

ure 2 shows our plan to use Fortran D as our machine-
independent programming model. We should note that
our goal in designing Fortran D is not to support the
most general data decompositions possible. Instead, our
intent is to provide data decompositions that are both
powerful enough to express data parallelism in scientific
programs, and simple enough to permit the compiler to
produce efficient programs.

A Fortran D program is a Fortran program aug-
mented with a set of data decomposition specifications.
If these specifications are ignored the program can be
run without change on a sequential machine. Hence,
the meaning of the program is exactly the meaning of
the Fortran program contained within it—the specifi-
cations do not affect the meaning, they simply advise
the compiler. Compilers for parallel machines can use
the specifications not only to decompose data structures
but also to infer parallelism, based on the principle that
only the owner of a datum computes its value. In other
words, the data decomposition also specifies the distri-
bution of the work in the Fortran program.

In this paper we describe a project to build and eval-
uate a Fortran D compiler for a MIMD distributed-
memory machine, namely the Intel iPSC/860. If suc-
cessful, the result of this project will go a long way

toward establishing that machine-independent parallel
programming is possible, since it is easy to target a
MIMD shared-memory machine once we have a work-
ing system for a MIMD distributed-memory machine.
The only remaining step would be the construction of
an effective compiler for a SIMD machine, like the Con-
nection Machine. Such a project is being planned and
will be the subject of a future paper.

The next section presents an overview of the data de-
composition features of Fortran D. Section 3 discusses
the compiler strategy for a single loop nest, and Sec-
tion 4 looks at compilation issues for whole programs.
Section 5 describes our approach to validating this work
on a collection of real application programs. In Section 6
we describe the relationship of this project to other re-
search in the area. We conclude in Section 7 with a
discussion of future work.

2 Fortran D

The data decomposition problem can be approached by
noting that there are two levels of parallelism in data-
parallel applications. First, there is the question of
how arrays should be aligned with respect to one an-
other, both within and across array dimensions. We
call this the problem mapping induced by the structure
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Figure 3: Fortran D Data Decomposition Specifications

of the underlying computation. It represents the min-
imal requirements for reducing data movement for the
program, and is largely independent of any machine con-
siderations. The alignment of arrays in the program de-
pends on the natural fine-grain parallelism defined by
individual members of data arrays.

Second, there is the question of how arrays should be
distributed onto the actual parallel machine. We call this
the machine mapping caused by translating the problem
onto the finite resources of the machine. It is depen-
dent on the topology, communication mechanisms, size
of local memory, and number of processors in the un-
derlying machine. Data distribution provides opportu-
nities to reduce data movement, but must also maintain
load balance. The distribution of arrays in the program
depends on the coarse-grain parallelism defined by the
physical parallel machine.

Fortran D is a version of Fortran that provides data
decomposition specifications for these two levels of par-

allelism. First, the DECOMPOSITION statement is used to
declare a problem domain for each computation. The
ALIGN statement is then used to describe a problem
mapping. Finally, the DISTRIBUTE statement is used
to map the problem and its associated arrays to the
physical machine. We believe that our two phase strat-
egy for specifying data decomposition is natural for the
computational scientist, and is also conducive to mod-
ular, portable code.

2.1 Alignment and Distribution Specifications

Here we give a quick summary of some basic
data decompositions supported in Fortran D. The
DECOMPOSITION statement simply declares the name, di-
mensionality and size of the decomposition. The ALIGN
statement specifies how arrays should be aligned with
respect to one another, both within and across array
dimensions. It represents the minimal requirements for
reducing data movement for the program, and is largely



independent of any machine considerations. The align-
ment of arrays in the program depends on the natural
fine-grain parallelism defined by individual members of
data arrays

Arrays mapped to the same decomposition are auto-
matically aligned with each other. There are two types
of alignment. Intra-dimensional alignment specifies the
alignment within each dimension. Inter-dimensional
alignment takes place between dimensions. The align-
ment of arrays to decompositions is specified by place-
holders in the subscript expressions of the array and
decomposition. In the following example:

REAL X(N), Y(N,N)

DECOMPOSITION A(N), B(N,N)

ALIGN X(I) with A(I-1)

ALIGN Y(I,J) with B(J, I)
A and B are declared to be decompositions of size N and
N x N, respectively. Array X is aligned with respect to

A with an offset of —1, and array Y is aligned w1th the

transpose of B.

After arrays have been aligned with a decomposmon,
the DISTRIBUTE statement maps the decomposition to
the finite resources of the physical machine. Data distri-
bution provides opportunities to reduce data movement
and load imbalance within the constraints specified by
data alignment. Data distribution takes advantage of
the coarse-grain parallelism, but its effectiveness is de-
pendent on the topology, communication mechanisms,
size of local memory, and number of processors in the
underlying machine.

Data distribution is specified by assigning an inde-
pendent atiribute to each dimension of a decomposi-
tion. Predefined attributes are BLOCK, CYCLIC, and
BLOCK_CYCLIC. The symbol * marks dimensions that are
not distributed. Once a distribution is chosen for the
decomposition, all the arrays aligned with the decom-
position can be mapped to the machine. The following
program fragment demonstrates Fortran D syntax, the
data decompositions are shown in Figure 3.

REAL X(N), Y(N,N)
DECOMPOSITION A(N), B(N,N)
ALIGN X(I) with A(I-1)

ALIGN Y(I,J) with B(I-2,J+2)
ALIGN Y(I,J) with B(J+2,I-2)
ALIGN Y(I,J) with A(I)
DISTRIBUTE A(CYCLIC)
DISTRIBUTE B(BLOCK,*)

2.2 Regular and Irregular Distributions

In addition, data parallelism may either be regular or
irregular. Regular data parallelism can be effectively
exploited through the data decompositions shown. Ir-
regular data parallelism, on the other hand, requires
irregular data decompositions and run-time processing

to manage the parallelism. In Fortran D, irregular dis-
tributions are defined by the user through an explicit
data array, as shown in the example below.

INTEGER MAP(N)

DECOMPOSITION IRREG(N)

DISTRIBUTE IRREG(MAP)
In this example, the elements of MAP must contain
valid processor numbers. IRREG(i) will be mapped to
the processor indicated by MAP(i). MAP may be ei-
ther distributed or replicated; distributed MAP arrays
will consume less memory but may require extra com-
munication to determine location. Fortran D also sup-
ports dynamic data decomposition, i.e., changing the
decomposition at any point in the program. The com-
plete Fortran D language is described in detail elsewhere
[FHK*90].
2.3 Distribution Functions

Distribution functions specify the mapping of an ar-
ray or The ALIGN and DISTRIBUTE statements in For-
tran D speclfy how distributed arrays are mapped to
the physical machine. The Fortran D compiler uses the
information contained in these statements to construct
distribution functions that can be used to calculate the
mapping of array elements to processors. Distribution
functions are also created for decompositions and are
used during the actual distribution of arrays onto pro-
Cessors.

The distribution function u, defined below,

I‘A(-.) (5.4(:) OIA(-')) (P J)

is a mapping of the global index 7 of a decomposition or
array A to a local index j j for a unique processor p. Each
distribution function has two component functions, é
and a. These functions are used to compute ownership
and location information. For a given decomposition or
array A, the owner function 64 maps the global index
i to its unique processor owner p, and the local index
function a4 maps the global index 7 to a local index j.

2.3.1 Regular Distributions

The formalism described for distribution functions are
applicable for both regular and irregular distributions.
An advantage of the simple regular distributions sup-
ported in Fortran D is that their corresponding distri-
bution functions can be easily derived at compile-time.
For instance, given the following regular distributions,

REAL X(N, O:N-1), Y(N,N)

DECOMPOSITION A(N,N), B(H,N)

ALIGN X(I,J) with A(I, J+1)

ALIGN Y(I,J) with B(J, I)

DISTRIBUTE A(BLOCK, *);

DISTRIBUTE B(CYCLIC, *);
the compiler automatically derives the distribution
functions in Figure 4. In the figure, the 2-D decompo-
sitions A and B are declared to have size (N, N). The



ok (i ) = ([i/ BlockSize], ((i — 1) mod BlockSize +1,7))

WG (i) = ((i— 1) mod P+ 1,([i/ P1,4))

ux(i,d) = ([i/BlockSize],((i— 1) mod BlockSize +1,j +1))

py(i,j) = (G —1) mod P+ 1,([5/P1,9)

Figure 4: Distribution Functions

number of processors is P. For a block distribution,
BlockSize = [N/ P].
2.3.2 Irregular Distributions

For an irregular distribution, we use an integer array
to explicitly represent the component functions 6a (;)
and aa (;) This is the most general approach possible
since it can support any arbitrary irregular distribution.
Unfortunately, the distribution must now be evaluated
at run-time. In the following 1-D example,

INTEGER MAP(N), X(N)

DECOMPOSITION A(N)

ALIGN X(I) with A(I)

DISTRIBUTE A(MAP)
the irregular distribution for decomposition A is stored
in the integer array MAP. The distribution functions
for decomposition A and array X are then computed
through run-time preprocessing techniques [SBW90,
MV90].

3 Basic Compilation Strategy

In this section we provide a formal description of the
general Fortran D compiler strategy. The basic ap-
proach is to convert Fortran D programs into single-
program, multiple-data (SPMD) node programs with ex-
plicit message-passing. The two main concerns for the
Fortran D compiler are 1) to ensure that data and com-
putations are partitioned across processors, and 2) to
generate communications where needed to access non-
local data.

The Fortran D compiler is designed to exploit large-
scale data parallelism. Our philosophy is to use the
owner computes rule, where every processor only per-
forms computation for data it owns [ZBG88, CK88,
RP89]. However, the owner compute rule is relaxed de-
pending on the structure of the computation. However,
in this paper we concentrate on deriving a functional de-
composition and communication generation by applying
the owner computes rule.

We begin by examining the algorithm used to com-
pile a simple loop nest using the owner computes rule.
Correct application of the rule requires knowledge of the
data decomposition for a program. As previously dis-
cussed, in Fortran D information concerning the owner-
ship of a particular decomposition or array element is
provided by the ALIGN and DISTRIBUTE statements.

3.1 Some Notation

We begin by describing some notation we will employ
later in this paper.

DO k=1 to rii by §
X(g(k)) =Y (h(k))
ENDDO

In the example loop nest above, k is the set of loop
iterations (also displayed as [I : i : 5]), X and Y are
distributed arrays, and g and h are the array subscript
functions for the left-hand side (lhs) and right-hand side
(rhs) array references, respectively.

3.1.1 Image

We define the image of an array X on a processor p as
follows:

imagex (p) = {7|6x(?) =p}

The image for a processor p is constructed by finding all
array indices that cause a reference to a local element
of array X, as determined by the distribution functions
for the array. As a result, image describes all the el-
ements of array X assigned to a particular processor
p. We also define t, as this processor, a unique proces-
sor identification representing the local processor. Thus
the expression imagex (t,) corresponds to the set of all
elements of X owned locally.

3.1.2 Iteration Sets

We define the iteration set of a reference R for a proces-
sor p to be the set of loop iterations 7 that cause R to
access data owned by p. Each element of the iteration
set corresponds to a point in the iteration space, and is
represented by a vector containing the iteration number
for each loop in the loop nest.

The iteration set of a statement can be constructed
in a very simple manner. Our example loop contains
two references, X(g(k)) and Y (h(k)). The iteration set
for processor p with respect to reference X (g(l;)) is sim-
ply g~1(imagex (p)), the inverse subscript function gt
applied to the image of the array X on processor p. Sim-
ilarly, the iteration set with respect to reference Y (h(k))
can be calculated as h~!(imagey (p)).

This property will be used in several algorithms later
in the paper. In particular, notice that when using the
owner computes rule, the iteration set of the lhs of an
assignment statement for processor p is exactly the it-



erations in which that statement must be executed on
p. For example, in the simple loop above, the function
g~ (imagex (tp)) may be used to determine when t,,
the local processor, should execute the statement.

3.2 Guard Introduction

The guard introduction phase of the compiler ensures
that computations in a program are divided correctly
among the processors according to the owner computes
rule. This may be accomplished by a combination of re-
ducing loop bounds and guarding individual statements.
Both approaches are based on calculating iteration sets
for statements in a loop.

3.2.1 Loop Bounds Reduction

Since evaluating guards at run-time increases execution
cost, the Fortran D compiler strategy is to reduce loop
bounds where possible for each processor to avoid eval-
uating guard expressions. Figure 5 presents a straight-
forward algorithm for performing simple loop bounds
reduction. The algorithm works as follows. First, the
iteration sets of all the lhs are calculated for the lo-
cal processor tp. These sets are then unioned together.
The result represents all the iterations on which a as-
signment will need to be executed by the processor. The
loop bounds are then reduced to the resulting iteration
set.

3.2.2 Mask Generation

In the case where all assignment statements have the
same iteration set, loop bounds reduction will elimi-
nate any need for masks since all statements within the
reduced loop bounds always execute. However, loop
bound reduction will not work in all cases. For instance,
loop nests may contain multiple assignment statements
to distributed data structures. The iteration set of
each statement for a processor may differ, limiting the
number of guards eliminated through bounds reduction.
The compiler will need to introduce masks for the state-
ments that are conditionally executed.

Figure 6 presents a simple algorithm to generate
masks for statements in a loop nest. Each statement is
examined in turn and its iteration set calculated. If it is
equivalent to the iteration set of the previous statement,
then the two statements may be guarded by the same
mask. Otherwise, any previous masks must be termi-
nated and a new mask created. We assume the existence
of functions to generate the appropriate guard/mask for
each statement based on its iteration set.

3.3 Communication Generation

Once guards have been introduced, the Fortran D com-
piler must generate communications to preserve the se-
mantics of the original program. This can be accom-
plished by calculating SEND and RECEIVE iteration sets.
For simple loop nests which do not contain loop-carried
(inter-iteration) true dependences [AK87], These itera-

tion sets may also be used to generate IN and OUT array
index sets that combine messages to a single processor
into one message. We describe the formation and use of
these sets in more detail in the following sections.

3.3.1 Regular Computations
LocAL, SEND, and RECEIVE Iteration Sets

We describe as regular computations those computations
which can be accurately characterized at compile-time.
In these cases the compiler can exactly calculate all com-
munications and synchronization required without any
run-time information. The first step is to calculate the
following iteration sets for each reference R in the loop
with respect to the local processor t,:

e LocAL - Set of iterations in which R results in an
access to data local to tp.

o SEND - Set of iterations in which R results in an
access to data local to t,, but the statement con-
taining R is executed on a different processor.

o RECEIVE - Set of iterations in which the statement
containing R is executed on ¢, but R results in an
access to data not local to t,.

The LocAL, SEND, and RECEIVE iteration sets can
be generated using the owner computes rule. Figure 7
shows the algorithm for regular computations. It starts
by first calculating the iteration set for the lhs of each
assignment statement with respect to the local processor
tp; this determines the LoCAL iteration set.

The iteration sets for each rhs of the statement are
then constructed with respect to the t,. Any element
of the LoCAL iteration set that does not also belong to
the iteration set for the rhs will need to access nonlocal
data; it is put in the RECEIVE iteration set. Conversely,
any elements in the iteration set for the rhs not also in
the LOCAL iteration are needed by some other processor;
it is put into the SEND iteration set. These iteration
sets complete specify all communications that must be
performed.

IN and OuT Index Sets

For loop nests which do not contain loop-carried true de-
pendences, communications may be moved entirely out-
side of the loop nest and blocked together. In addition,
messages to the same processor may also be combined to
form a single message. These steps are desirable when
communication costs are high, as is the case for most
MIMD distributed-memory machines. The following ar-
ray index sets are utilized for these optimizations:

e IN - Set of array indices that correspond to non-
local data accesses. These data elements must be
received from other processors in order to perform
local computations.
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FOR each loop nest k= [ to 1t by 5§ DO
reduced_iter set = 0
FOR each statement; in loop with lhs = X.(g,(lc))
iter _set = g; !(imagex;(tp)) N [I 1 : §)
reduced_iter _set = reduced_iter_set U iter _set
ENDFOR
reduce bounds of loop nest to those in reduced_iter _set
ENDFOR

Figure 5: Reducing Loop Bounds Using Iteration Sets

FOR each loop nest k=1 to i by & DO
previous_iter _set = [:m:3]
FOR each statement; in order DO
IF statement; = assignment AND Ihs = global array X (gi(K)) THEN
iter _set = g; !(imagex,(tp)) N [:m: 38
ELSE
iter_set = [ : 17t : 3]
ENDIF
IF iter_set = previous_iter_set THEN
insert statement; after statement;_;
ELSE
terminate previous mask if it exists
create new mask for iter_set and insert statement; inside mask
previous_iter _set = iter _set
ENDIF
ENDFOR
ENDFOR

Figure 6: Generating Statement Masks Using Iteration Sets

FOR each statement; with lhs = X.(g,(lc)) in loop nest k = [ to 7 by § DO
local zter_setx = g7 (imagex, (t,)) N [T:7i:3)
FOR each rhs reference to a d1str1buted array Y}(h,(lc)) DO

local _iter _sety, i = h7!(imagey, (tp)) N [[:m:3)
receive zter_sety local zter_setx — local iter.set;,"_
send zter.sety local zter_sety — local zter.setx
ENDFOR
ENDFOR

Figure 7: Generating SEND/RECEIVE Iteration Sets (for Regular Computations)




FOR each statement; with lhs = Xi(gi(k)) in loop nest k = I to 7 by 5 DO
FOR each rhs reference to a distributed array Yi(h;(k)) DO

{#* initialize IN and OUT index sets *}
FOR proc =1 to numprocs DO
in_z‘ndea:_setgf‘""“) =0

out.indez_setgf._’ Proc) —
ENDFOR
{* compute OUT index sets *}

FOR each j € send_iter_sety! DO
sendp = 6x,(gi (b (13} (tp, avi(hi())))))

out_z'ndez_setgf‘"""d’) = out_indez.set(,f‘”""d’) U {ev;(h:(7))}

ENDFGR
{* compute IN index sets *}

FOR each fe recez’ve_z‘ter_.set;’i' DO
recvp = by, (hi(7))

in.indez_set(;',””w') = in_indez_setg:"’"w’) U {ay;(h(5))}

ENDFOR
ENDFOR
ENDFOR

Figure 8: Generating IN/OUT Index Sets (for Regular Computations)

e OUT - Set of array indices that correspond to lo-
cal data accessed by other processors. These data
elements must be sent to other processors in order
to permit them to perform their computations.

The calculation of IN and OUT index set for regular
computations is depicted in Figure 8. The algorithm
works as follows. Each element in the SEND and RE-
CEIVE iteration sets is examined. Some combination
of the subscript, mapping, alignment, and distribution
functions and their inverses are applied to the element
to determine the source or recipient of each message.
The message to that processor is then stored in the ap-
propriate IN or OUT index set, effectively blocking it
with all other messages to the same processor.

More complicated algorithms are needed for loops
with loop-carried dependences, since not all communi-
cation can be moved outside of the entire loop nest.
To handle loop-carried dependences, IN and OUT in-
dex sets need to be constructed at each loop level. De-
pendence information may be used to calculate the ap-
propriate loop level for each message, using the algo-
rithms described by Balasundaram et al. and Gerndt
[BFKK90, Ger90]. Messages in SEND and RECEIVE sets
can then be inserted in the IN or OUT set at that loop
level.

3.3.2 Irregular Computations

Irregular computations are computations that cannot be
accurately characterized at compile-time.! It is not pos-
sible to determine the SEND, RECEIVE, IN, and OUT
sets at compile-time for these computations. However,
an inspector [SMC89, KMSB90] may be constructed to
preprocess the loop body at run-time to determine what
nonlocal data will be accessed. This in effect calculates
the IN index set for each processor. A global transpose
operation between processors can then be used to cal-
culate the OUT index sets as well.

An inspector is the most general way to generate
IN and OUT sets for loops without loop-carried de-
pendences. Despite the expense of additional commu-
nications, experimental evidence from several systems
[KMV90, WSBH91] proves that it can improve perfor-
mance by blocking together communications to access
nonlocal data outside of the loop nest. In addition it
also allows multiple messages to the same processor to
be blocked together. The Fortran D compiler plans to
automatically generate inspectors where needed for ir-
regular computations.

The structure of an inspector loop is shown in Fig-
ure 9. For compatibility with our treatment of regular

1Trregular computations are different from irregular distribu-
tions, which are irregular mappings of data to processors.
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FOR each statement; with lhs = X;(gi(k)) in loop nest k = [ to ri by § DO
Iocal.iter_sett)}’__ = g7 }(imagex, (tp)) N [ :m:3)
receive_iter.set;,". =0
FOR each rhs reference to a distributed array Y,(h,(l?)) DO
{* calculate IN index sets for this processor *}
FOR each j € local_iter set;." DO
IF (bv.(hi())) # tp) THEN
receive_iter_seti,", = rcceive-iter.set;,’., U {7}
Tecvp = 68,(hi (7))
in_indez_set(,f‘”'“"’) = in_indez_setgf'.”'""’) U {ay.(h())}
ENDIF
ENDFOR
{* send IN index sets to all other processors *}
FOR recv, = 1 to numprocs DO
IF (recvp, # t,) THEN

recvp)

send(in-indez.set(}f‘” , Tecu,)
ENDIF
ENDFOR

{* receive IN index sets, convert into OUT index sets *}
FOR send, = 1 to numprocs DO
IF (sendp, #1t,) THEN

receive(out-indez.set(}fi’ sendy) sendp)
ENDIF
ENDFOR
ENDFOR
ENDFOR

Figure 9: Inspector to Generate IN/OUT Index Sets (for Irregular Computations)
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{* original loop to be transformed into send, receive, and compute loops *}
DO k=1 to 1 by §
X(g(k)) = Y ((k))
ENDDO
{* send loop *}
FOR send, =1 to numprocs DO
IF (out_indez_setgf”"nd’) # 0) THEN

pisendp) ,,send,))

buﬂer_values(out.vaIue_setgf ) out_z'nde:c_setgf

prsendy)

send(out_value_setg , sendp)

ENDIF
ENDFOR
{* local compute loop *}
FOR each j € {Iocal_iter_set‘,; —receive_iter_set;,’} DO
X(aa(9())) = Y (a(h(7)))
ENDFOR
{* receive loop *}
FOR recv, =1 to numprocs DO
IF (in.indea:_setgf”"c"’) #0) THEN
receive(in_value_set(}f’ reevs) recvp)
store_values(in_value_sct(}f""w’) ) in_indez.set(}f”"c"’))
ENDIF
ENDFOR
{* nonlocal compute loop *}
FOR each ; € receive_iter.set;,’ Do

X(ax(9(7)))) = getvalue(Y (h(3)))
ENDFOR

Figure 10: Send, Receive, and Compute Loops Resulting from IN/OuT Index Sets
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Figure 11: Regular Section Descriptors (RSDs)

computations, the Fortran D inspector also generates
the LocAL and RECEIVE iteration sets. In the first part
of the inspector, the LOCAL iteration set is calculated
for each statement based on the lhs. The rhs is exam-
ined for each element in the LOCAL iteration set. Any
nonlocal references cause the iteration to be added to
the RECEIVE iteration set. The owner and local index
of the nonlocal reference are then calculated and added
to the IN index set.

After the local IN sets have been calculated, a global
transpose is performed in the remainder of the inspec-
tor. Each processor sends its IN index set for a given
processor to that processor. Upon receipt, they become
OuT index sets for the receiving processor.

3.3.3 Resulting Program

Once the SEND and RECEIVE sets have been calculated,
the example loop nest is transformed into the loops pic-
tured in Figure 10 [KMSB90]. In the send loop, every
processor sends data they own to processors that need
the data. The OUT index set for rhs of the statement
in the example loop has already been calculated. How-
ever, the function buffer_values() must be used to actu-
ally collect the values at each index and the OUT set.
The resulting values are then sent to the appropriate
Processor.

Next, in the local compute loop, loop iterations that
assign and use only local data may be executed. These
are elements that are in the LocAL but not RECEIVE it-
eration sets. These iterations are executed immediately
following the send loop to take advantage of communi-
cation latency.

In the receive loop, every processor receives nonlo-
cal data sent from their owners in the send loop. The
values received are mapped to their designated storage
locations using the function store_values(). The indices
corresponding to these values have already been calcu-
lated and stored in the IN index sets. Finally, in the
nonlocal compute loop every processor performs com-
putations for loop iterations that also require nonlocal
data. The function get.value() is used to fetch nonlocal
data from their designated storage locations.

3.4 Regular Sections

For the sake of efficiency, when generating communica-
tions the Fortran D compiler constructs approximations
of the image for each distributed array using regular
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section or data access descriptors [CK87, BK89, HK90].
A regular section descriptor (RSD) is a compact rep-
resentation of rectangular or right-triangular array sec-
tions and their higher dimension analogs. They may
also possess some constant step. The union and inter-
section of RSDs can be calculated inexpensively, making
them highly useful for the Fortran D compiler. RSDs
have also proven to be quite precise in practice, due to
the regular computation patterns exhibited by scientific
programs [HK90]. Figure 11 shows some examples of
regular section descriptors.

4 Compilation of Whole Programs

We have shown how the Fortran D compiler introduces
guards and generates communications for a simple loop
nest. When compiling whole programs containing mul-
tiple loop nests or procedures, the compiler faces much
more complex problems, as well as many opportunities
for optimization. Here we present a brief overview of
the issues facing the Fortran D compiler.

4.1 Data Decomposition Analysis

Researchers have found that the computation structure
may often change between different phases of a pro-
gram. Relying on a single static data decomposition for
these programs will result in excessive data movement
[KLS90, KN90]. To overcome this problem, Fortran D
permits data decomposition specifications to be inserted
at any point in a program, providing dynamic data de-
compositions. However, to support a modular program-
ming style, we restrict the scope of dynamically declared
data decompositions to that of the current procedure.
When a procedure returns, any dynamic data decompo-
sitions declared locally are restored to the values they
possessed before the procedure was called.

Dynamic data decompositions complicate the job of
the Fortran D compiler, since it needs to know how an
array is decomposed in order to generate the proper
guards and communications. We define the reaching
data decompositions at a point P in the program to be
the set of data decompositions that have a path to P
not killed by another decomposition statement. In or-
der to generate the correct code for each reference to
a distributed array, the Fortran D compiler must per-
form global dataflow analysis to solve the reaching data
decomposition problem. When there are multiple reach-
ing decompositions, the compiler must either insert run-



time routines to handle each decomposition, or apply
node splitting techniques to allow compile-time resolu-
tion.

4.2 Program Transformations

One of the features of the Fortran D compiler is that
it utilizes the results of dataflow and dependence anal-
ysis to apply program transformations that eliminate
guards or improve communications. Transformations
must be performed after decomposition analysis, since
their profitability depend on the data decomposition
present. The following sections show examples of a few
transformations. We are investigating the usefulness of
other transformations such as loop skewing and peeling.
In the following examples, for the sake of clarity we ig-
nore guards and assume that all arrays are identically
aligned and have BLOCK distributions.

4.2.1 Loop Interchanging

Loop interchange can be used to move dependences to
outer loops, enabling block communications.

{* dependence on loop j *}
doi=1,n
doj=1,n
perform send(X(i,j-1))
performrecv(X(i,j-1))
X(i,j) = X(1,3-1)
enddo
enddo
{* after loop interchange *}
doj=1,n
perform_send(X(1:n,j-1))
performrecv(X(1:n,j-1))

doi=1,n
X(i,j) = X(d,j-1)
enddo
enddo

4.2.2 Strip Mining

Strip mine can be used to simplify guard introduction,
reduce size of messages, and improve load balance.

{* original message too large *}
perform send (X(1:n))
perform recv(X(1:n))
doi=1,n
= X(1)

enddo
{* strip mine reduces message size *}
do i = 1, n, strip

perform send(X(i:i+strip-1))

perform recv(X(i:i+strip-1))

do i$ = i, i+strip-1

= X(@i$)

enddo

enddo
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4.2.3 Loop Distribution

Loop distribution can be used to simplify guard intro-
duction and enable other transformations such as loop
interchange.

{* dependences on both loops i and j *}
doi=1,n
perform send(X(i-1,1:n))
performrecv(X(i-1,1:n))
doj=1,n
perform send(Y(i,j-1))
performrecv(Y(i,j-1))
X(i,j) = x(i-1,3j)
Y(i,j) = Y(i,j-1)
enddo
enddo
{* after distribution & interchange *}
doi=1,n
perform_send(X(i-1,1:n))
performrecv(X(i-1,1:n))

doj=1,n
X(i,j) = X(i-1,3)
enddo
enddo
doj=1,n

perform send(Y(1:n,j-1))
performrecv(Y(1:n,j-1))
doi=1,n
Y(i,j) = Y(i,j-1)
enddo
enddo

4.2.4 Align

Loop alignment [ACK87] can improve guard introduc-
tion.

{* statements require masks *}
doi=1,n

enddo

{* alignment eliminates masks in loop *}

X(1) =i

doi=2,
X(i)
Y(i)

enddo

Y(n+1i) = n

n
i
i-

1

4.3 Communications Optimization

A major goal of the Fortran D compiler is to aggressively
optimize communications. We describe some techniques
we will attempt in order to eliminate or combine mes-
sages.



4.3.1 Vectorize Messages

Generating communications for loops containing loop-
carried true dependences is complex. A simple solution
is to insert all communications at the deepest loop nest-
ing level. directly preceding each reference to a nonlocal
memory reference. Unfortunately, this approach gener-
ates large numbers of small messages that may prove in-
efficient because of high communications overhead and
latency. Algorithms developed by Balasundaram et al.
and Gerndt employ data dependence information to in-
sert communications at the outermost loop allowable,
without violating dependences [BFKK90, Ger90]. This
enables messages to be vectorized, as in the following
example: :

{* dependence on loop j *}
doi=1,n
doj=1,n
performsend(X(i,j-1))
performrecv(X(i,j-1))
X(i,j) = X(i,3j-1)
enddo
enddo
{* dependence on loop i *}
doi=1,n
perform send(X(i-1,1:n))
performrecv(X(i-1,1:n))

doj=1, n
X(i,j) = X(@i-1,3)
enddo
enddo

Vectorizing messages are desirable because they com-
bine many small messages into one large message, re-
ducing message overhead. The Fortran D compiler will
use the algorithm comm from [BFKK90] for determin-
ing the loop level for inserting communications.

Message vectorization is a special case of prefetch-
ing data; i.e., fetching nonlocal data before it is used
in a computation. More general data prefetching opti-
mizations are possible. Like instruction scheduling or
software prefetching, the goal of data prefetching is to
reduce apparent latency by performing useful computa-
tion while waiting for expensive memory accesses. The
KALI compiler, developed by Koelbel et al., utilizes this
strategy for individual parallel loops by computing loop
iterations that access only local data while waiting for
data from other processors [KMV90].

4.3.2 Utilize Collective Communications

Li and Chen showed that the compiler can take ad-
vantage of the highly regular communication patterns
displayed by many computations [LC90a]. Rather than
generating a large number of individual send and receive
communication primitives, the compiler can instead
take advantage of efficient collective communications li-
braries such as EXPREss [EXP89], CRYSTAL_ROUTER
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[FIL+86], CRYSTAL communications [CCL89], and
ParTI [SBW90]. The compiler will exploit these rou-
tines to reduce the cost of communications. The guiding
principles are:

e Apply program analysis to identify communica-
tions patterns

e Utilize collective communications routines where
profitable, even if overcommunication ) result; e.g.,
extra data/messages

e Recognize and replace reductions; e.g., sum reduc-
tions

4.3.3 Global Dataflow Analysis

Communications may be optimized further by consider-
ing interactions between all the loop nests in the proce-
dure. Global dataflow analysis can show that an assign-
ment to a variable is live at a point in the program
if there are no intervening assignments to that vari-
able. For instance, assume that messages in previous
loop nests have already retrieved nonlocal elements for
a given array. If those values are live, messages in suc-
ceeding loop nests may be eliminated or reduced. The
precision of such analyses can be improved by using reg-
ular section descriptors to analyze liveness for array sec-
tions.

4.3.4 Combine or Eliminate Messages

The algorithms for generating communications de-
scribed in Section 3 consider each statement individ-
ually. When compiling loop nests containing multiple
statements, communications may be optimized by com-
bining or eliminating messages based on other messages
in the loop nest. The Fortran D compiler will examine
the messages generated for each array at each loop level,
starting at the most deeply nested loop. The compiler
needs to determine whether any of the messages may
be:

o Subsumed by other messages at that loop level
e Combined with other messages at that loop level

o Subsumed or reduced by messages at inner loops

In addition, if a processor is sending several messages
for different arrays to the same processor, they may be
combined into the same message.

4.3.5 Relax Owner Computes Rule

The owner computes rule provides the basic strategy of
the Fortran D compiler. We may also relax this rule,
allowing processors to compute values for data they do
not own. For instance, suppose multiple rhs of an as-
signment statement are owned by a processor that is
not the owner of the lhs. Computing the result on the



processor owning the rhs and then sending the result to
the owner of the lhs could reduce the amount of data
communicated. Consider the following loop:

doi=1,n
A(i) = B(i) + C(1)

enddo
Assume that B(i) and C(i) are mapped together to a
processor different from the owner of A(i). The amount
of data communicated may be reduced by half if the
computation is first performed by the processor owning
B and C, then sent to the processor owning A. This op-
timization is a simple application of the “owner stores”
rule proposed by Balasundaram [Bal91].

In particular, it may be desirable for the Fortran D
compiler to partition loops amongst processors so that
each loop iteration is executed on a single processor,
such as in KALI and ARF [KMV90, WSBH91]. This
technique may improve communication and provides
greater control over load balance, especially for irregular
computations. It also eliminates the need for individ-
ual staternent masks and simplifies handling of control
flow within the loop body. The Fortran D compiler will
detect phases of the computation where the owner com-
putes rule may be relaxed to improve communications
or load balance.

4.3.6 Replicate Computation

The Fortran D compiler considers scalar variables to be
replicated. All processors thus perform computations
involving assignments to scalar variables. This causes
redundant computation to be performed, but is prof-
itable because it significantly reduces communication
costs. A similar approach may be taken for compu-
tations on elements of distributed arrays. It may be
more efficient to replicate computation on multiple pro-
cessors, rather than incur the expense of communicating
the value from the owner of that element. Consider the
following loop:

doi=3,n

X(@@) = f(i)
Y(d) = (X(i-1) + X(i-2)) / 2
enddo

Assume that arrays X and Y are distributed arrays
aligned identically onto the same decomposition, and
that f is a function performing computation that does
not require values from other processors. Straightfor-
ward compilation of this loop would cause messages to
be generated, communicating the new values of X(i-1)
and X (i-2) to the processor performing the assignment
to Y(i). However, if the Fortran D compiler replicates
the computation of X(i-1) and X(i-2) on the receiv-
ing processor, it eliminates the need for any communi-
cations.
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4.3.7 Eliminate Dead Computation

A side effect of replicating all scalar variables is that
naive compilation frequently results in computations
that generate processor-specific dead values, i.e., values
that are not used by the local processor. In these cases
an obvious optimization is to not compute the scalar
value. For instance, consider the following loop:

doi=1,n
sum = Y(i-1) + Y(i+1)
X(i) = sum / 2
enddo
The Fortran D compiler must determine that the scalar
variable sum is only used locally by the assignment to
X(i) and guard it appropriately. Otherwise it will waste
computation by calculating sum on all processors for all
loop iterations. Worse yet, the compiler may generate
communications to fetch nonlocal values of Y, adding
significant communication costs!

4.3.8 Block Messages

The goal of many communication optimizations is re-
duce communications overhead by combining small mes-
sages together to form larger messages. However, the
Fortran D compiler needs to be careful since physical
machines have local memory and message buffering lim-
its. Excessively large or long-lived messages may cause
memory and buffer overflows that will abort or deadlock
the program.

If information concerning the limits of the system can
be fed to the compiler, it may block large messages by
strip mining the loops containing communications. Mes-
sages may then be broken up and moved to the strip
mined loop. The compiler would need to calculate a
blocking factor that remains within the physical lim-
its of the underlying parallel machine. Blocking is also
useful as a means of compromising between communi-
cations and load balance.

4.4 Storage Management

Once guards and communications have been calculated,
the Fortran D compiler must still select and manage
storage for all nonlocal array references. The simplest
approach is to allocate full-sized arrays on each proces-
sor. This requires the least change to the program, but
may waste tremendous amounts of memory. More so-
phisticated storage management techniques manipulate
both the location and lifetimes of nonlocal storage in or-
der to reduce memory use and code complexity. Storage
management may be separated into two phases, selec-
tion of the desired storage types, and coordinating their
usage.

4.4.1 Determine Storage of Nonlocal Data

First, analysis must be performed to choose a storage
type for nonlocal access of each array. There are several
different storage types, described below:



e Overlaps are expansion of local array sections to ac-
commodate neighboring nonlocal elements [Ger90].
Overlaps are useful for regular computations be-
cause they allow the generation of clear and read-
able code. However, for certain computations stor-
age may be wasted because all array elements be-
tween the local section and the one accessed must
also be part of the overlap. Storage is also wasted
because overlaps are assigned to individual arrays,
and cannot be reused for other arrays later in the
program.

e Persistent buffers are designed to overcome the con-
tiguous nature of overlaps. They are useful when
the size of the nonlocal data is fixed, but is not
necessarily in a neighboring area. For instance, a
persistent buffer can be used to store the pivot for
Gaussian elimination.

e Temporary buffers are used for nonlocal data with
short live ranges. They may be reused after the
loop, or even within the loop.

o Hash tables are mainly used to store nonlocal data
for irregular distributions. They provide a nonlocal
value cache that allows quick lookup for nonlocal
values [MSMB90].

4.4.2 Maintain Overlap Areas, Temporaries,
and Hash Tables

Once the type of storage is chosen, the compiler needs
to perform analysis to determine the total amount of
storage needed as overlaps, persistent buffers, or tem-
porary buffers. It also needs to change all nonlocal array
references assigned to buffers so that they access the ap-
propriate buffer instead.

4.5 Interprocedural Issues

The presence of procedures adds significantly to the
complexity of the compilation process, especially for
data decomposition analysis. Just as within a proce-
dure, we need to calculate which data decompositions
reach every reference to a distributed array. If multiple
decompositions reach a procedure, either run-time rou-
tines or interprocedural node splitting techniques such
as cloning or inlining may be required to handle the
code. Since Fortran D semantics limit the scope of all
decompositions to the procedure in which they are de-
clared, this can be solved as a forward interprocedural
dataflow problem, using the techniques developed for
the ParaScope environment [CKT86].

Unfortunately, the same semantics also require the
compiler to insert calls to run-time data decomposi-
tion routines to restore the original data decomposition
upon procedure return. Since dynamic data decompo-
sition is an expensive operation, these calls should be
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eliminated where possible. We define a data decompo-
sition specification to be live if it has a reachable use;
i.e., if there is a path from the specification to a refer-
ence to a distributed array that is not killed by a differ-
ent specification. The live data decomposition problem
may be solved as a backward interprocedural problem.
Many compiler inserted run-time data decompositions
can then be determined to be not live, and may be safely
eliminated. It may also be possible to hoist dynamic
data decompositions out of loops, dramatically improv-
ing the performance of loops containing data decompo-
sition statements.

4.6 Compiler Architecture

In review, the primary goal of the Fortran D compiler is
to produce a correct distributed-memory program based
on the owner computes rule. To do this, the compiler
introduces guards and generates communications to ac-
cess nonlocal data. Information from dataflow, depen-
dence, and interprocedural analysis is applied to en-
hance each phase of compilation. Another important
goal of the compiler is to optimize communications and
minimize load imbalance. The basic architecture of the
compiler is shown below:

1. Data Decomposition Analysis

(a) Determine reaching decompositions
(b) Determine live decompositions
(¢c) Optimizing decompositions
2. Program Transformations
(a) Loop interchanging
(b) Strip mining
(c) Loop distribution
(d) Align
3. Guard Introduction

(a) Calculate SEND & RECEIVE iteration sets
(b) Loop bounds reduction
(c) Mask generation

4. Communication generation

(a) Calculate SEND & RECEIVE index sets
(b) Calculate IN & OUT index sets
(c) Generate inspector/executors

5. Communication optimization

(a) Vectorize messages

(b) Utilize collective communications
(c) Global dataflow analysis

(d) Combine/eliminate messages

(e) Relax owner computes rule

(f) Replicate computation

(g) Eliminate dead computation

(h) Block messages

6. Storage Assignment

(a) Determine storage of nonlocal data
(b) Maintain overlap areas, temporaries, and hash
tables
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Figure 12: Fortran D Programming Environment

4.7 Fortran D Programming Environment

The compiler is a key element of the Fortran D pro-
gramming system being developed at Rice University
[HKK*91]. The structure of the programming system
is shown in Figure 12. It is being developed in the con-
text of the ParaScope parallel programming environ-
ment [CCH*88], and will take advantage of its analy-
sis and transformation abilities [CKT86, KMT91]. An-
other part of the Fortran D system is a static perfor-
mance estimator that will take as input a Fortran D or
message-passing Fortran program and predicts its per-
formance on the target machine [BFKK90, BFKK91].
The performance estimation is based on training sets,
programs containing kernel computation and communi-
cations that can be executed on the target machine. The
automatic data partitioner is the final component of the
Fortran D programming system. It will utilize both the
performance estimator and Fortran D compiler to auto-
matically select and predict the performance of different
data decompositions on the target machine.

5 Validation

"We plan to establish whether our compilation scheme

for Fortran D can achieve acceptable performance on the
iPSC/860, a representative MIMD distributed-memory
machine. We will use a benchmark suite currently be-
ing developed by Geoffrey Fox at Syracuse. This suite
will consist of a collection of Fortran programs. Each
program in the suite will have five versions:

(v1) the original Fortran 77 program,

(v2) the best hand-coded message-passing version of
the Fortran program,

(v3) a “nearby” Fortran 77 program,
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(v4) a Fortran D version of the nearby program, and

(v5) a Fortran 90 version of the program.

The “nearby” version of the program will utilize the
same basic algorithm as the message-passing program,
except that all explicit message-passing and blocking
of loops in the program are removed. The Fortran D
version of the program consists of the nearby version
plus appropriate data decomposition specifications. The
purpose of the program suite is to provide a fair test of
the prototype compiler that does not depend on high-
level algorithm changes, but does exercise its ability to
optimize whole programs based on the structure of the
computation and machine-dependent issues such as the
number and speed of processors in the parallel machine.

Our validation strategy is depicted in Figure 13. We
will compare the running time of the best hand-coded
message-passing version of the program (v2) with the
output of the Fortran D compiler for the Fortran D

‘version of the nearby program (v4) We will view the

project as successful if the Fortran D version is within a
factor of two for approximately 75% of the programs in
the validation suite. In effect we will be testing the lim-
its of our machine-independent Fortran D programming
model, as well as the efficiency and capabilities of our
compiler technology. Future experiments will also com-
pare the Fortran 90 compiler and programs for SIMD
machines.

6 Relationship to Other Research

6.1 Programming Models and Languages

The proliferation of parallel architectures has fo-
cused much attention on machine-independent paral-
lel programming. Some researchers have proposed
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elegant architecture-independent programming models
such as Bird-Meertens formalism [Ski90] and the Bulk-
Synchronous bridging model [Val90]. However, their
suitability for scientific programming is unclear, and
they also lack language or compiler support. h

High-level parallel languages such as Linda [CG89)],
Strand [FT90, FO90], and Delirium [LS91] are valuable
when used to coordinate coarse-grained functional par-
allelism. However, they tend to be inefficient for cap-
turing fine-grain data parallelism of the type described
by Hillis and Steele [HS86], because they lack both lan-
guage and compiler support to assist in efficient data
placement. Parallelism must also be explicitly specified
when using these languages. As a result, language and
compiler support is needed to automatically detect and
exploit fine-grained data parallelism.

6.2 Compilation Techniques

The Fortran D compiler borrows heavily from previous
research on compiling data-parallel application codes for
distributed-memory machines. In the following sections,
we look at related systems and their contributions to
our Fortran D compilation strategy. First we look at
some compilation techniques, then we examine existing
compilation systems.

Gupta and Banerjee [GB90] propose a constraint-
based approach to automatically calculate suitable data
decompositions. They use simple alignments and distri-
butions similar to those in Fortran D. Prins [Pri90] uti-
lizes shape refinement in conjunction with linear trans-
formations to specify data layouts and guide resulting
data motion. These researchers do not discuss providing
compiler support to generate communications.

Some researchers concentrate on computations within
loops that only involve a single array. Ramanujam and
Sadayappan [RS89] examine both the data and itera-
tion space to derive a combined task and data parti-
tion of the loop nest. Hudak and Abraham [HA90] find
a stencil-based approach useful for analyzing commu-
nications and deriving efficient rectangular or hexago-
nal data distributions. These researchers do not discuss
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generating communication for these complex distribu-
tions. They also make simplifying assumptions about
the effects of the underlying processor topology, and do
not consider collective communications.

Wolfe [Wol89, Wol90] describes transformations such
as loop rotation for distributed-memory programs with
simple BLOCK distributions. Callahan and Kennedy
[CK88] propose methods for compiling programs with
user-specified data distribution functions and using
compiler inserted load and store commands to support
nonlocal memory accesses. They also demonstrate how
such programs can be optimized using transformations
such as loop distribution, loop peeling, etc. The For-
tran D compiler will apply many of the same trans-
formations. BOOSTER [PvGS90] provides user-specified
distribution functions defined as program views, but
does not generate or optimize communications.

6.3 SIMD Compilation Systems
6.3.1 CM Fortran

CM Fortran [AKLS88, TMC89] is a version of For-
tran 77 extended with vector notation, alignment, and
data layout specifications. Programmers must explic-
itly specify data-parallelism in CM FORTRAN programs
by marking certain array dimensions as parallel. The
operating system of the underlying SIMD distributed-
memory machines provides the illusion of infinite ma-
chine size through the use of virtual processors. This
greatly simplifies the data distribution and communica-
tion generation responsibilities of the compiler, and has
freed researchers to concentrate on techniques to auto-
matically derive both static and dynamic data align-
ments [KLS88, TMC89, KLS90, KN90]. More recently,
researchers have also begun to study strip mining and
other techniques to avoid the inefficiencies of using vir-
tual processors [Wei91].

6.3.2 C*

C* [RS87] is an extension of C similar to C++ that
supports SIMD data-parallel programs. C* labels data
as mono (local) or poly (distributed). There are no



alignment or distribution specifications; the compiler
automatically chooses the data decomposition. Paral-
lel algorithms are specified as actions on a domain, an
abstract data type implementation based on the C++
class. Communications are automatically generated by
the compiler. As with CM Fortran, virtual processors
are generated for each element of a domain and mapped
to each physical processor. Researchers have also exam-
ined synchronization problems when translating SIMD
programs into equivalent SPMD programs, as well as
several communication optimizations [QH90].

6.3.3 DINO

DiNno [RSW89, RSW90, RW90] is an extended version
of C supporting general-purpose distributed computa-
tion. DINO supports BLOCK, CYCLIC, and special stencil-
based data distributions with overlaps, but provides
no alignment specifications. A DINO program contains
a virtual parallel machine declared to be an environ-
ment. Parallelism is explicitly specified by composite
functions. Nonlocal memory references must be anno-
tated with the “#” operator. The DINO compiler then
translates these references into communications. Pass-
ing distributed data as parameters to composite func-
tions also generates nonlocal memory accesses. Special
DINo language constructs are provided for reductions.
DINO programs are deterministic unless special asyn-
chronous distributed arrays are used. As with CM For-
tran, DINO programs generate multiple processes per
physical processor when large numbers of virtual pro-
cessors are declared in the environment.

6.3.4 Paragon

PARAGON [CR89, Ree90] is a programming environ-
ment targeted at supporting SIMD programs on MIMD
distributed-memory machines. It provides both lan-
guage extensions and run-time support for task man-
agement and load balancing. Data distribution in
PARAGON may either be performed by the user or the
system. Parallel arrays are mapped onto shapes that
consist of arbitrary rectangular distributions. Only the
first two dimensions of each array may be distributed,
and alignment is not supported. The location of each
array element may be determined at run-time by check-
ing the distribution map stored on each processor. Re-
distribution and replication of arrays and subarrays, as
well as permutation and reduction mechanism are sup-
ported. Irregular distributions and run-time preprocess-
ing support is being planned. PARAGON does not per-
form analysis or transformations to detect or enhance
parallelism.

6.3.5 SPOT

SPoT [SS90, Soc90] is a point-based SIMD data-parallel
programming language. Distributed arrays are defined
as regions. Computations are specified from the point
of view of a single element in the region, called a point.
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Locations relative to a given point are assigned sym-
bolic names by neighbor declarations. An iteration in-
dez operator allows the programmer to specify whether
nonlocal values from neighbors are from the current or
previous iteration. This stencil-based approach allows
the SPOT compiler to derive efficient near-rectangular
data distributions. The compiler then generates com-
putation and communication by expanding the single
point algorithm to cover all points distributed onto a
node. No alignment and or distribution specifications
are provided. It is not clear how SPoT will support com-
putation patterns that cannot be described by stencils,
or those involving multiple arrays. :

6.4 MIMD Compilation Systems
6.4.1 Crystal

CrysTaL [CCL89, LC90b, LC90a] is a high-level func-
tional language. @ The CRYSTAL compiler targets
distributed-memory machines, performing both auto-
matic data decomposition and communications gener-
ation. Programs are first separated into phases. Each
phase has a different computation structure, represented
by an indez domain. Heuristics are employed to align
data arrays with the index domain, both within and
across dimensions, then the control structure of the pro-
gram is derived. Communication patterns are synthe-
sized from the computation, evaluated for a variety of
block distributions, then matched with CRYSTAL collec-
tive communication routines. Later phases of the com-
piler generate message-passing C programs for the phys-
ical machine. Because it targets a functional language,
CRYSTAL does not possess program analysis techniques
for imperative languages such as Fortran. It is currently
unclear whether the CRYSTAL language can express all
scientific computations. Work in progress to adapt the
CRYSTAL compiler for scientific Fortran codes will help
answer this question.

6.4.2 Id Nouveau

ID NOUVEAU [RP89] is a functional language extended
with single assignment arrays called I-structures. User-
specified BLOCK distributions are provided. The basic
run-time resolution algorithm is similar to the guard
and message introduction phases of the Fortran D com-
piler, but without any attempt to eliminate redundant
guards. Guard elimination is described as compile-time
resolution; it is performed by calculating the set of eval-
uators and participants for each statement. Message
presending and blocking optimizations are performed
using vectorization transformations such as loop fusion
and strip mining. Global accumulates are also sup-
ported.

6.4.3 SUPERB

SuPERB [ZBG88, Ger90] is a semi-automatic paralleliza-
tion tool that supports arbitrary user-specified contigu-



ous rectangular distributions. It performs dependence
analysis to guide interactive program transformations
in a manner similar to the ParaScope Editor [KMT91].
SUPERB originated the overlap concept as a means to
both specify and store nonlocal data accesses. Once
program analysis and transformation is complete, com-
munication is automatically generated and blocked uti-
lizing data dependence information. Some interproce-
dural analysis is supported. The Fortran D compiler
uses overlaps for storing certain classes of nonlocal data.
Major differences between SUPERB and the Fortran D
compiler include support for data alignment, automatic
compilation, collective communications, dynamic data
decomposition, and storage choices for nonlocal values.

6.4.4 ASPAR, Express

Aspar [IFKF90] is a compiler that performs auto-
matic data decomposition and communications gener-
ation for loops containing a single distributed array.
It utilizes collective communication primitives from the
EXPRESS run-time system for distributed-memory ma-
chines [EXP89]. AsPAR performs simple dependence
analysis using A-lists to detect parallelizable loops. The
structure of the loop computation may be recognized as
a reduction operation, in which case the loop is paral-
lelized by replacing the reduction with the appropriate
EXPRESS combine operation. If the loop performs regu-
lar computations on a distributed array, a micro-stencil
is derived and used to generate a macro-stencil to iden-
tify communication requirements. Communications uti-
lizing EXPRESS primitives are then automatically gener-
ated. ASPAR automatically selects BLOCK distributions;
no alignment or distribution specifications are provided.

6.4.5 MIMDizer

MiMDIZER [SWW91] is an interactive parallelization
system for MIMD shared and distributed-memory ma-
chines. Based on FORGE, it performs dataflow and de-
pendence analyses and also supports loop-level trans-
formations. Associated tools also graphically display
call graph, control flow, dependence, and profiling in-
formation. When programming for distributed-memory
machines, users interactively select BLOCK or CYCLIC dis-
tributions for selected array dimensions. Code spread-
ing is applied interactively to loops to introduce paral-
lelism. Alignment is not provided. MIMDIZER automat-
ically generates communications corresponding to non-
local memory accesses at the end of the parallelization
session.

6.4.6 Pandore

PANDORE [APT90] is a compiler for distributed-memory
machines that takes as input C programs extended with
BLOCK, CYCLIC, and overlapping data distributions. Dis-
tributed arrays are mapped by the compiler onto a user-
declared virtual distributed machine that may be config-
ured as a vector, ring, grid, or torus. The compiler then
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outputs code in the vdm_l intermediate language. Calls
to the PANDORE communication library to access nonlo-
cal data is also automatically generated by the compiler.
Guard introduction and communications optimization
techniques are under development.

6.4.7 AL

AL [Tse90] is a language designed for the Warp
distributed-memory systolic processor. The program-
mer utilizes DARRAY declarations to mark parallel ar-
rays. The AL compiler then applies data relations to
automatically align and distribute each DARRAY, detect
parallelism, and generate communication. Only one di-
mension of each DARRAY may be distributed, and com-
putations must be linearly related.

6.4.8 Oxygen

OXYGEN [RA90] is a compiler for the K2 distributed-
memory machine. Unlike systems discussed previously,
OXYGEN follows a functional rather than data decom-
position strategy. Task-level parallelism is specified by
labeling each parallel block of code with a p_block di-
rective. Loop-level parallelism is specified by label-
ing parallel loops with either split or scatter directives.
Decompositions are mapped onto the K2 architecture
as ring, rowwise, or colwise. Distributed data arrays
may be declared as local, multicopy, or singlecopy, cor-
responding to private, replicated, and distributed, re-
spectively. Explicit communications directives for re-
ductions and broadcast are also provided. The OXYGEN
compiler then converts Fortran code with user directives
into C++ node programs with communications. Mes-
sages are inserted at points in the program called check-
points to enforce coarse-grain synchronization. Work is
in progress to automatically generate OXYGEN direc-
tives for functional and data decomposition.

6.4.9 PARTI, ARF

PARTI [SBWO0] is a set of run-time library routines that
support irregular computations on MIMD distributed-
memory machines. PARTI is first to propose and imple-
ment user-defined irregular distributions [MSS*88] and
a hashed cache for nonlocal values [MSMB90]. PARTI
has also motivated the development of ARF, a compiler
designed to interface Fortran application programs with
PARTI run-time routines. ARF supports BLOCK, CYCLIC,
and user-defined irregular distributions, and generates
inspector and ezecutor loops for run-time preprocessing
[KMSB90, WSBH91]. The goal of ARF is to demon-
strate that inspector/executors can be automatically
generated by the compiler. It does not currently gener-
ate messages at compile-time for regular computations.

6.4.10 Kali

KaLI [KMV90, MV90] is the first compiler system that
supports both regular and irregular computations on
MIMD distributed-memory machines. Programs writ-



ten for KALI must specify a virtual processor array and
assign distributed arrays to BLOCK, CYCLIC, or user-
specified distributions. Instead of deriving a functional
decomposition from the data decomposition, KALI re-
quires that the programmer explicitly partition loop
iterations onto the processor array. This is accom-
plished by specifying an on clause for each parallel loop.
Communication is then generated automatically based
on the on clause and data distributions. An inspec-
tor/ezecutor strategy is used for run-time preprocess-
ing of communication for irregularly distributed arrays
[KMSB90]. Major differences between KALI and the
Fortran D compiler include mandatory on clauses for
parallel loops, support for alignment, collective commu-
nications, and dynamic decomposition.

7 Conclusions and Future Work

An efficient yet usable machine-independent parallel
programming model is needed to make large-scale par-
allel machines useful for scientific programmers. We
believe that Fortran D, a version of Fortran enhanced
with data decompositions, provides such a programming
model. This paper presents the design of a compiler
that translates Fortran D to distributed-memory par-
allel machines, as well as a strategy for evaluating its
effectiveness.

The major features of the Fortran D compiler include
a rich set of data decomposition specifications, sophis-
ticated intraprocedural and interprocedural analyses,
dynamic data decomposition, program transformation,
communication optimization, and support for both reg-
ular and irregular problems. We expect to be able to
generate efficient code for a large class of programs with
only minimal effort from the scientific programmer.

The current version of the compiler generates code
for a subset of the decompositions allowed in Fortran D,
namely unaligned block decompositions. We are extend-
ing the implementation to handle other data decompo-
sitions. Significant work remains to develop and im-
plement decision algorithms for the optimizations pre-
sented in this paper, as well as a whole program compi-
lation algorithm.
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