Parallel Problem Architectures and
Their Implications for Portable
Parallel Software Systems

Geoffrey Fozx

CRPC-TR91120
February, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

SCCS - 78
CRPC - TR91120

Parallel Problem Architectures
and their Implications
for Portable Parallel Software Systems*

Geoffrey C. Fox
Northeast Parallel Architectures Center
111 College Place
Syracuse, NY 13244-4100
315-443-1723
gcf@nova.npacsyr.edu
Presentation at DARPA Workshop, Providence, Rhode Island, Feb 28, 1991.

Abstract

We show how the structure or architecture of applications suggest the
nature of parallel software systems that will run portably on a variety of parallel
machines - both those available now and those expected during the coming
decade. The discussion is illustrated by lessons learned from real applications
implemented on current MIMD and SIMD machines. These are mainly
academic problems and the extrapolation to complex industrial and government
applications is unproven but we believe our methodology will still be applicable.

*This work was partially supported by ASAS Program Office and the
National Science Foundation under Cooperative Agreement No. CCR-8809165—
" the Government has certain rights in this material.

E Introduction

Over the last decade, parallel computing has been explored in a research
environment and I have no doubt that

Parallel Computing Works.

What do I mean by this and what does it imply? Current commerdial
parallel computers are immature, but they offer better peak performance and
better cost performance than conventional machines for many problems. A
large number of parallel applications have been developed. There are only a tiny
fraction of the computations running on sequential machines, but the initial
parallel experimental applications cover a wide range of algorithms and perhaps
the "essence” (computational kernels) of the majority of large scale sdentific and
engineering calculations. Clearly, the main limitation to the rapid spread of
parallel computing is not hardware or algorithms but rather software. In this
paper, we show how portable parallel software systems can be optimized around
three broad application classes, or more pretentiously, three problem

architectures. The current analysis is incomplete; we only have extensive
~ experience with small academic codes - typically up to 10,000 lines in length. The
extrapolation to the much larger and complex industrial and government
applications is uncertain. For instance, we have little understanding of the
parallelization of problems requiring real-time and extensive input/output

support.

This preliminary analysis suggests that future software systems should be
built with a close cooperation between hardware, software, and application
expertise. This interdisciplinary approach underlies our educational initiative in
computational science. |

In Figure 1, we follow Kennedy and divide software into five layers, where
we are most interested in the upper two layers which should be portable to a
variety of hardware architectures, incdluding both SIMD and MIMD machines.
As shown in Figure 2, we view software as mapping problems onto machines.
Both problems and machines have an architecture and the software system is
dependent on both. However, we expect that the high level software systems

-2-

discussed here will be built around the problem and not the machine
architecture. The latter is reflected in low level machine dependent support
software which should be hidden from most users. We can probably persuade
many users to produce parallel versions of their code; however, they will be
loath to do this more than once. It is not reasonable that each new parallel
architecture require a significantly different software implementation.

In Section II we review an architectural classification for problems, and in
Section III we analyze current parallel software experience from this point of
view. This leads to a tentative parallel software stratégy for a general application
which we present in Section IV. In Section V, we discuss software support for
synchronous problems and in Section VI, the harder and still uncertain irregular
loosely synchronous case is treated briefly.

II: Problem Architectures

We have introduced three broad dlasses of problem [Fox:88b, Denning:90,
Angus:90a]. These were deduced from our experience at Caltech combined with
a literature survey which was reasonably complete up to the middle of 1989. At
Caltech, we developed some fifty applications on parallel machines of which
twenty-five led to publications in the scientific literature describing the results of
simulations performed on our parallel computers [Fox:88a, Fox:89n, Fox:87d,
Fox:8800]. Our work was mainly on the hypercube, but the total of three
hundred references cover work on the Butterfly, transputers and the SIMD
Connection Machine and DAP. We were interested in applications and
algorithms where we could evaluate the scaling to very large parallel machines.
Table 1B illustrates what we mean by an application — "modelling the acoustic
signature of a submarine using direct simulation of turbulence” would be
another example and in Table 1A we divide eighty-four application areas into
eight disciplines.

We introduce three broad classes of problem architectures which
technically describe the temporal (time or synchronization) structure of the
problem [Fox:88b]. Further detail is contained in the spatial structure or
computational graph describing the problem at a given instant of simulation
time [Fox:88tt]. In Table 1C, we only single out one special spatial structure,

-3-

“embarrassingly parallel,” where there is little or no connection between the
individual parallel program components. For embarrassingly parallel problems,
the synchronization (both software and hardware) issues are greatly simplified.
As shown in Table 1C, asynchronous problems do not clearly scale to massively
parallel systems unless they are embarrassingly parallel.

We have introduced three general temporal structures called
synchronous, loosely synchronous, and asynchronous; we sometimes shorten
these to Classes I, II, and III, respectively. The temporal structure of a problem is
analogous to the hardware classification into SIMD and MIMD. The spatial
structure of a problem is analogous to the interconnect or topology of the
hardware. The detailed spatial structure is important in determining the
performance of an implementation [Fox:88a] but it does not affect the broad
issues discussed here.

Synchronous problems are data parallel in the language of Hillis
[Hillis:87a] with the restriction that each data point is evolved in time with the
same procedure. The problem is synchronized microscopically at each computer
dock cycle. Such problems are particularly common in academia as they
naturally arise in any description of some world in terms of identical
fundamental units. This is illustrated by quantum chromodynamics (QCD)
simulations of the fundamental elementary particles which involve a set of
gluon and quark fields on a regular four dimensional lattice. These
computations form the largest use of supercomputer time in academia.

Loosely synchronous problems are also typically data parallel but now we
allow different data points to be evolved with distinct algorithms. Such
problems appear whenever one describes the world macroscopically in terms of
the interactions between irregular inhomogeneous objects evolved in a time
synchronized fashion. Typical examples are computer or biological circuit
simulations where different components or neurons are linked irregularly and
modelled differently. Time driven simulations and iterative procedures are not
synchronized at each microscopic computer clock cyde but rather only
macroscopically "every now and then" at the end of an iteration or a simulation
time step.

Loosely synchronous problems are spatially irregular but temporally
regular. The final asynchronous class is irregular in space and time. A good
example is an event driven simulation which can be used to describe the
irregular dircuits we discussed above, but now the event paradigm replaces the
regular time stepped simulation. Other examples include computer chess
[Felten:88i] and transaction analysis. Asynchronous problems are hard to
parallelize and some may not run well on massively parallel machines. They
require sophisticated software and hardware support to properly synchronize the
nodes of the parallel machine as is illustrated by time warp mechanism
[Wieland:89al.

Synchronous or loosely synchronous problems parallelize on systems
with many nodes. The algorithm naturally synchronizes the parallel
components of the problem without any of the complex software or hardware
synchronization mentioned above for event driven simulations.- As shown in
Table 1C, 90% of the surveyed applications fell into the classes which parallelize
well. This also incdludes the embarrassingly parallel I, I, III-EP classes. Itis
interesting that massively parallel distributed memory MIMD machines which
have an asynchronous hardware architecture are perhaps most important for
loosely synchronous sdientific problems.

In Table 2, we give details behind some of the applications in Table 1C by
listing a few of the recent (end of 1989) Caltech applications with their problem
architectures and an estimate of the appropriateness of SIMD or MIMD
hardware. The software portability issue is illustrated by noting that all these
codes were originally developed for the MIMD Hypercube, but few have been re-
implemented for the SIMD machines with their currently distinct software
model — even though, as shown in Table 2, some 50% of these applications
would naturally use a SIMD architecture. This is one of our motivations to
develop software systems designed for particular problem architectures and not
for particular machines. Thus, we are developing Fortran as a language for
synchronous problems which can be mapped to both SIMD and MIMD
machines.

We have looked at many more applications since the detailed survey in
[Fox:88b] and the general picture described above remains valid! We will

-5-

emphasize later that many complicated problems are mixtures of the basic
classifications. An important case is illustrated by a battle management
simulation implemented by my collaborators at JPL [Meier:89a]. This is formally
asynchronous with temporally and spatially irregular interconnections between
various modules, such as sensors for control platforms and input/output tasks.
However, each module uses a loosely synchronous algorithm such as the multi-
target Kalman filter [Gottschalk:90b] or the target-weapon pairing system. Thus,
we had a few (~ 10-50) large grain asynchronous (Class II) objects, each of which
was a data parallel Class I or II algorithm. This type of asynchronous problem
can be implemented in a scaling fashion on massively parallel machines. We
will denote this MICG-IIFG to indicate the Coarse Grain asynchronous controlling
of Fine Grain loosely synchronous subproblems. A similar example of this
problem class is machine vision and signal processing, where one finds an
asynchronous collection of data parallel modules to perform various image
processing tasks, such as stereo matching and edge detection. A somewhat
different example is a project of Dennis from Rice in the NSF center CRPC to
study optional well placement in an oil reservoir. Here, the reservoir
simulation for a given placement is loosely synchronous, whereas the overall
optimization is a naturally asynchronous Class Il algorithm. In the above cases,
the asynchronous components of the problems were large grain modules with
modest parallelism. This can be contrasted with Otto and Felten's MIMD
computer chess algorithm, where the asynchronous evaluation of the pruned
tree is "massively parallel” [Felten:88i]. Here, one can break the problem up into
many loosely coupled but asynchronous parallel components which give
excellent and scalable parallel performance. Each asynchronous task is now a
Class I or II modestly parallel evaluation of a given chess position.

I: Current Software Scenario and Lessons

The dominant software environment on SIMD machines has been
Fortran 90, which on the CM-2 has replaced *LISP and C* as the primary
language for scientific codes because of the quality of the compiler and the

familiarity of scientific users with Fortran [TMC:89a].

On MIMD machines, the major environment has been Fortran or C plus
explicit message passing. This has been adequate for synchronous and loosely

-6-

synchronous problems, which dominated both our work at Caltech, and the
applications surveyed in Tables 1 and 2. OCCAM has been used extensively on
transputer systems but this has not gained general acceptance, and itis also a
system with explicit message passing. The success of the early applications on
parallel machines is exciting — it certainly shows that “parallel computing
works." But what do we understand by this? It means that nearly all large scale
problems parallelize, but not that we have the best software methodology.
Further, most of the current implementations are small academic or research
codes; for instance, the fifty Caltech codes were nearly all between 1000 and 10,000
lines long. Longer industrial codes will require better software approaches.
These need to address several issues. Explicit message passing, which we have
used up to now, is formally portable among MIMD machines, as you can
parameterize the number of nodes so that a given program will run on any size
machine. However, this is deceptive as performance optimization does make
the message passing approach machine dependent. One must consider issues
such as the overlap of communication and calculation, decomposition choices,
and message location trade-offs for latency and bandwidth. These introduce
machine dependence, espedially for the irregular Class II problems. To be truly
portable, the user must implement an arbitrary decomposition, and this is
impractical. The problem is clear; Fortran (C) plus message passing or OCCAM
are software models built around the machine and not the problem architecture.

We should stress that what we did was "correct”; namely, we used the
available software that allowed us to quickly explore the initial rounds of parallel
machines. We must use these lessons to design better software that can address
the key large industrial applications. These applications have buried in them
essentially the same algorithms that we have shown to work with current
software environments.

One lasting lesson is that parallelization of an application requires an
understanding of the problem architecture. We can see how this is manifested
in three different approaches to parallel software. In the Fortran 90 approach
used on SIMD machines, such as the CM-2 and Maspar, the data parallel objects
are manipulated explicitly, and parallelization is technically hard but well
defined. On MIMD machines, we have currently required the user to know the
structure of their problems and use this to parallelize "by hand." A traditional

-7-

parallelizing computer uses a dependency graph to extract the problem
architecture and so parallelize "sequential languages” such as Fortran 77. We
believe that users are good at understanding their own problem structure, and |
this explains the success of Fortran 90 and Fortran plus message passing.
Compilers cannot reliably extract problem structure from existing programs
without user help. Thus, automatic compiler parallelization of Fortran 77 for
distributed memory machines has not been very successful so far. As described
in the next section, Kennedy's group at Rice is implementing an extended
Fortran 77D, which has additional user decomposition commands which
essentially specify the problem architecture for the compiler [Fox:91c].

We will use these lessons and the problem architecture discussion of
Section II to analyze what software systems could be appropriate for our different
problem architectures.

Class I Synchronous Problems

These problems are tightly coupled synchronous problems which are
regular in space and time. Their data or geometric parallelism can be naturally
expressed in Fortran 90D (appropriately extended Fortran 90) or similar
languages such as CM Fortran, Crystal [Chen:88b], C* [Quinn:90a, 90b], or even
APL. This allows the user to specify the problem structure in a natural high
level fashion using the vector and matrix constructs of Fortran 90. The compiler
can take care of mapping this onto different machines induding those of SIMD
and MIMD architecture [Wu:90c, Fox:91b].

Class IIl Asynchronous Problems

This class is irregular in space and time and often exhibits functional or
process parallelism. Considering the battle management problem discussed in
Section II, there is a natural class of parallel components formed by the different
sensors and control platforms, and these objects communicate with messages
even in the real world! Thus, in this architecture, we see a natural break-up into
processes and message paésing at the problem level, and software engineering
approaches, such as object oriented programming, ADA, C++, Strand, [Foster:90]
PCN, ISIS or Linda [Gelernter:89a] are possibilities. In many cases we do not need

-8-

to use carefully optimized decompositions but rather, use statistical load
balancing and decomposition methods. This problem dlass includes distributed
computing and the software such as ISIS designed to support it. As well as this
loosely coupled category, we also see the event driven simulations with their
specialized software, which we discussed in Section IL These can be tightly
coupled but the effectiveness of large scale parallelism is unclear.

We use "loosely-coupled" or "tightly-coupled” to mean a low or high
volume of message traffic between the individual components; this can be
measured quantitatively as a ratio of communication to the computational
complexity. One could use this to quantify my rather vague statements above
and we hope to follow with a more detailed analysis in a later paper.

Class II Loosely Synchronous Problems

These problems are irregular in space but regular in time. Often their
spatial structure changes dynamically, and adaptive algorithms are needed. This
class is hard because the tightly coupled spatial structure demands the same kind
of detailed optimizations provided by the Fortran 90D or Fortran 77D compiler
for Class L However, the irregularities make this hard to implement.

We know that Fortran plus message passing works for this problem class,
but we need a more portable user friendly approach. This can involve new data
structures to extend languages like Fortran 90. It needs sophisticated run time
support, such as that provided by the PARTI system from ICASE. In particular,
we need dynamic load balancing modules for which the basic research has been
done, but no general implementations are yet available [Fox:88mm]. We will
expand this brief discussion in Section V.

IV: A Strategy for Portable Parallel Programming

The field of parallel computing is advancing so'rapidly that there is no
time to develop a major new software environment. Further, there seem to be
no compelling new ideas that would warrant this. Thus, we expect that the
realistic strategy is to build on existing sequential languages - ADA, C, Fortran.
We can expect that reasonable node compilers will exist for these languages and

-9-

all the necessary support software, such as (node) libraries. Extending well
known languages will also aid in the migration of existing codes and make good
use of users' experience.

We see two important ways in which we can extend existing languages.
The first is illustrated by Chandy's PCN, C++ and Birman's ISIS, which
essentially allow one to build and manipulate tasks written in sequential ADA,
C, or Fortran 77. This is a reasonable software environment for Class III
problems. The second way of extending C and Fortran 77 adds the parallel data
structures to obtain C* and Fortran 90 appropriate for Class I and possible Class II
problems. We emphasize that these are complementary and not competing
approaches. Indeed, we have shown in Section II the importance of the mixed
Class IIICG-IIFG, which is naturally supported by, for example PCN, where each
module could be a data parallel Fortran 90D or Fortran 77D code. Future
software system development should be coordinated so that such mixed systems
are possible by integrating the development of groups concentrating on these
different extensions.

This will give us a hybrid software system, which appears suitable for most
problems. There is an overall software environment oriented towards
asynchronous applications with full functionality for creating and controlling
objects communicating with a sophisticated message passing environment.
Often at this level, we will only see modest parallelism. Each of the
"asynchronous objects” is potentially massively data parallel synchronous or
loosely synchronous module supported by languages optimized for these classes.
We will expand on the latter in Sections V and VL

We can also note that languages like ADA can support Class III problems
but probably need extension for data parallelism. This could be obtained either
by adding high level data structures to ADA or by allowing mixed languages with
data parallel (say, C*) modules integrated into ADA. Clearly, this is a
sophisticated software environment which has to map mixed problem
architectures onto heterogeneous distributed computer systems with networks of
SIMD and MIMD parallel machines. I believe that we know “in principle" how
to tackle these issues but we have a lot of technology development for the

-10-

separate components of the system before we can hope to implement the full
sophisticated mixed environment.

V: Fortran D as a Parallel Software Environment

The success of CM Fortran as the programming environment for the CM-2
suggests that it is a good approach for our synchronous Class I applications. As
discussed earlier, we view Fortran 90D (CM Fortran, C¥) as programming systems
for "SIMD" (synchronous) problems and not as languages for SIMD machines.
Compilers can map Fortran 90D effectively into all parallel architectures suitable
for this problem class incdluding MIMD, SIMD parallel machines, systolic arrays
and heterogeneous networks. Fortran 90 was not originally designed as a
massively parallel programming system but it has one key attribute that makes it
effective. It uses high level data structures explicitly (as vectors and matrices)
and so the problem architecture is clear and not hidden in values of pointers and
DO loop indices. It is portable, as high level constructs such as A=B*C with A, B,
and C matrices, can be optimized by the compiler for each new machine. Our
experience has been that in many cases, users prefer Fortran 90 to Fortran 77,
even for sequential applications, as it expresses applications naturally with much
shorter code. Often one finds a factor of 2 to 3 reduction for Fortran 90 compared
to Fortran 77. ' '

However, Fortran 90 needs to be extended in significant ways for
parallelism. We have designed one modest set of extensions to handle
decomposition and "embarrassingly parallel” forall statements. As described in
the next section, we are investigating further enhancements, espedially in the
area of new data structures. We term the resultant system Fortran 90D [Fox:91c].

Table 3 displays one example that helped us evaluate Fortran 90 as a
portable environment [Keppenne:89a, 90a]. We isolated a 1500 line
computational kernel from climate code using spectral methods. Extensive use
of pointers made this code perform poorly on vector machines, such as the Cray
YMP and made it essentially impossible for either a compiler or an outside
person to improve or parallelize code. However, the code was rewritten by the
original developer in Fortran 90, reducing the code size to 600 lines. This new
code had an order of magnitude better performance on the Cray YMP while an

-11-

outside “"computer scientist" was able to convert it into Fortran 77 and Fortran 77
plus message passing without difficulty. We believe that this last step can be
performed by a compiler using lessons from this and other manual conversions.
In this sense, the new Fortran 90 code is portable and scalable to new machines.

We are developing with Rice and Parasoft an integrated Fortran
environment, illustrated in Figure 3, which emphasizes that the language
extensions supply equally well to Fortran 77 and Fortran 90 [Fox:91c]. In this
picture, we can view Fortran 90D as a "permanent annotation language" for user
assisted parallelization of Fortran 77. It will require more experimentation with
real application codes to compare the relative merits of parallelizing Fortran 77D
versus Fortran 90D.

VI: Loosely Synchronous Extensions of Fortran 90D

In Table 4, we illustrate how increasingly complex problem architectures
require extensions to a Fortran 90D environment. We see a progression of '
extensions to Fortran 90 including:

a) Decomposition directives

b) forall commands to control aspects of problems involving
asynchronous but uncoupled calculations

) Run-time support for decomposition of irregular scientific
computations such as those found in molecular dynamics and
unstructured finite element calculations. This area has been
pioneered by Saltz with the PARTI system [Saltz:90a, Saltz:87a].

d) The above extensions of Fortran 90 handle problems in which the
data structure is an array — including arrays of pointers needed in
o). However, there are important cases where more general data
structures are needed to naturally capture the architecture of the
problem. This area has received little attention in the computer
science community. I see it as a critical motivation for new parallel
computing environments and languages. Thus, Fortran 90 handles

- -12-

simple array data structures quite well; one may prefer comparable
array extensions of C (i.e., C*), ADA, or functional languages such as
Crystal [Chen:88b]. I believe our study of Fortran 90D will naturally
extend to comparable parallel versions of other languages.
However, the key uncertainties are in the support of the difficult
Class IT and III problems. One data structure of importance is that of
a tree which occurs in any recursive algorithm, such as sorting
[Fox:88a] or most importantly, in scientific simulations using one of
the various multiscale approaches. These are of growing interest in
vision, partial differential equations, and particle dynamics.

We are collecting as many examples as we can of these "skeletons in the
parallel language dloset" which can help motivate extensions to Fortran 90D and
other languages.

One particularly good example is the Barnes-Hut [Barnes :86a] clustering
algorithm, which Salmon and Warren have implemented on the hypercube
[Fox:89n, Salmon:90a]. Consider the evolution of a collection of N stars where
the long range force between stars gives a complexity of O(N?) for the direct
calculation. As illustrated in Figure 4, this can be reduced by noting that for
widely separated systems, one can approximate the effect of the M stars by their
* centroid, or generally, their multipole expansion [Greengard:88a]. Applied
recursively, this approach reduces the complexity to O(N) or O(NlogN),
depending on the details of the implementation. This gives the tree like data
structure exemplified in Figure 5, where we form (in two dimensions) successive
quad-trees until there is, at most, one star in each final "leaf" of the tree. As
shown in Figure 6, this method parallelizes well with efficdencies of 80% on large
realistic three dimensional problems on the 512 node NCUBE-1. However, this
careful user decompbsition and parallelism is not easy to capture in current
languages. - The "natural” (in C) data structure is a linked list to represent the
dynamic tree. Presumably, no static compiler analysis can decode the pointer
values to uncover this data structure. Subtleties used by Salmon — including
replication of the top of the tree among all nodes to avoid a hot spot there — are
hard to automate with current approaches.

-13-

We are currently investigating this and other difficult examples, such as
high level image analysis and other multiscale algorithms, to see if they can be
supported by additional data structures (e.g., a tree) and a new run-time library to
manipulate these structures and relate them to existing Fortran (C*) constructs.

VII: Conclusions

We have surveyed many applications and shown how study of problem
architectures allows one to clarify which software approaches are appropriate for
which problems and will give scalable portable code.

Our current research is concentrating on implementing and
understanding these lessons as described in Sections VI and VII. We are also
hoping to broaden our application survey and, in particular, study the large codes
seen in government and industrial problems.

Acknowledgements

I would like to thank Ken Kennedy, Adam Kolawa, Joel Saltz and Min-
You Wu for helping me understand these issues.

References

[Angus:90a] Angus, L G. Fox, G. C.,, Kim, J. S., and Walker, D. W. Solving
Problems on Concurrent Processors: Software for Concurrent Processors,
volume 2. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1989.

[Barnes:86a] Barnes, J., and Hut, P. "A hierarchical O(NlogN) force calculation
algorithm,” Nature, 324:446, 1986.

[Chen:88b] Chen, M., Li, J., and Choo, Y. "Compiling parallel programs by
optimizing performance,” Journal of Supercomputing, 2:171-207, 1988.

[Denning:90] Denning P. J. and Tichy W. F. "Highly Parallel Computation,”
Science 250, 1217-1222 (1990).

(Felten:88i] Felten, E. W., and Otto, S. W. "A highly parallel chess program,” in
Proceedings of International Conference on Fifth Generation Computer
Systems 1988, pages 1001-1009. ICOT, November 1988. Tokyo, Japan,
November 28-December 2. Caltech Report C3P-579c.

-14-

[Foster:90] Foster, L, Taylor, S. “Strand™: New Concepts in Parallel
Programming," Prentice-Hall, Englewood Cliffs, NJ 07632, 1990.

[Fox:87d] Fox, G. C. "Questions and unexpected answers in concurrent
computation,” in J. J. Dongarra, editor, Experimental Parallel Computing
Architectures, pages 97-121. Elsevier Science Publishers B. V., North-
Holland, 1987. Caltech Report C3P-288.

[Fox:88a] Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon, J. K.,
and Walker, D. W. Solving Problems on Concurrent Processors, Volume
1. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1988.

[Fox:88b] Fox, G. C. "What have we learned from using real parallel machines to
solve real problems?," in G. C. Fox, editor, The Third Conference on
Hypercube Concurrent Computes and Applications, Volume 2, pages 897-
955. ACM Press, 11 West 42nd Street, New York, NY 10036, January 1988.
Caltech Report C3P-522.

[Fox:88mm] Fox, G.C. "A review of automatic load balancing and
decomposition methods for the hypercube,” in M. Schultz, editor,
Numerical Algorithms for Modern Parallel Computer Architectures,
pages 63-76. Springer-Verlag, 1988. Caltech Report C3P-385.

[Fox:8800] Fox, G. C. "The hypercube and the Caltech Concurrent Computation
Program: A microcosm of parallel computing,” in B. J. Alder, editor,
Special Purpose Computers, pages 1-40. Academic Press, Inc., 1988. Caltech
Report C3P-422.

[Fox:88tt] Fox, G. C., and Furmanski, W. "The physical structure of concurrent
problems and concurrent computers,” Phil. Trans. R. Soc. Lond. A,
326:411-444, 1988. Caltech Report C3P-493.

[Fox:89n] Fox, G. C. "Parallel computing comes of age: Supercomputer level
parallel computations at Caltech,” Concurrency: Practice and Experience,
1(1):63-103, September 1989. Caltech Report C3P-795.

[Fox:91b] Fox, G. C. "Achievements and Prospects for Parallel Computmg p
Invited Talk at International Conference on Parallel Computing:
Achievements, Problems and Prospects, Anacapri, Italy, June 3-9, 1990.
C3P-927.

[Fox:91c] Fox, G.C., Hiranadani, S., Kennedy, K, Koelbel, C., Kremer, U., Tseng,
C.-W., Wu, M.-Y. "Fortran D Language Spedifications,” December 1990.
Rice COMP TR90-141.

-15-

[Gelernter:89a] Gelernter, D. "Multiple tuple spaces in Linda,” in Proceedings of
Parallel Architectures and Languages Europes, volume 2, page 366.
Springer-Verlag, LNCS, June 1989.

[Gottschalk:90b] Gottschalk, T. D. "Concurrent multi-target tracking," Technical
Report C3P-908, California Institute of Technology, April 1990. Published
in Proceedings of the Fifth Distributed Memory Computing Conference,
April 9-12, Charleston, South Carolina.

[Greengard:88a] Greengard, L. "The rapid evaluation of potential fields in
particle systems,"” in ACM Distinguished Dissertation Series, Vol. IV. MIT
Press, Cambridge, Mass., 1988. Yale research report YALEU/DCS/RR-533,
April 1987.

[Hillis:87a] Hillis, W. D. "The Connection Machine," Scientific American, page
108, June 1987.

[Keppenne:89a] Keppenne, C. L. Bifurcations, Strange Attractors and Low-
Frequency Atomospheric Dynamics. PhD thesis, Universite Catholique de
Louvain, 1989.

[Keppenne:90a] L., K. G., Ghil, M., Fox, G. C., Flower, J. W., Kolawa, A., Papacdo,
P. N., Rosati, J. J., Shepanski, J. F., Spadaro, F. G., and Dickey, J. O. *Parallel
processing applied to climate modeling." Technical Report SCCS-22,
Syracuse University, November 1990.

[Meier:89a] Meier, D. L., Cloud, K. C, Horvath, J. C., Allan, L. D,, Hammond, W.
H., and Maxfield, H. A. A general framework for complex time-driven
simulations on hypercubes,” Technical Report C3P-761, California
Institute of Technology, March 1989. Published in the Proceedings of the
Fourth Conference on Hypercubes, Concurrent Computers and
Applications.

[Quinn:90a] Quinn, M. J., and Hatcher, P. J. "Data-parallel programming on
multicomputers,” IEEE Software, pages 69-76, September 1990.

[Quinn:90b] Quinn, M. J. "Compiling SIMD Programs for MIMD Architectures,”
Proceedings of the IEEE Computer Society 1990 International Conference
on Computer Languages, March 1990.

(Salmon:90a] Salmon, J. Parallel Hierarchical N-Body Methods. PhD thesis,
California Institute of Technology, December 1990.

[Saltz:87a] Saltz,]., Mirchandaney, R, Smith, R., Nicol, D., and Crowley, K. “The
PARTY parallel runtime system,” in Proceedings of the SIAM Conference

-16-

on Parallel Processing for Scientific Computing. Society for Industrial and
Applied Mathematics, 1987. held in Los Angeles, CA.

[Saltz:90a] Saltz, J., Berryman, H., and Wu, J. "Multiprocessor and runtime
compilation,” Concurrency: Practice and Experience, 1991. To be published.

[TMC:89a] Thinking Machines Corporation, Cambridge, MA. CM Fortran
Reference Manual, version 5.2-0.6 edition, September 1989.

[Wieland:89a] Wieland, F., Hawley, L., Feinberg, A., Diloreto, M., Blume, L.,
Ruffles, J., Reiher, P., Beckman, B., Hontalas, P., Bellenot, S., and Jefferson,
D. “The performance of a distributed combat simulation with the time
warp operating system," Concurrency: Practice and Experience, 1(1):35-50,
1989. Caltech Report C3P-798.

[Wu:90c] Wu, M.-Y., and Fox, G. C. "An outline of Fortran90 compiler for
distributed memory systems.," Technical Report SCCS-41, Syracuse Center
for Computational Science, 1990.

-17-

Table 1: Summary of Problem Architectures

A. Data Sample from 300 Papers [Angus 903, Fox 88b]

Total Applications

Biology
14 Engineering
13 Physics

11 Computer Science

' Chemistry and Chemical Engineering
10 Geology & Earth Science
5 Astronomy and Astrophysics

18 Numerical Algorithms

B.Typical Applications

Calculate Proton Mass
Seismic Modelling
Dynamics of H+HO
Image Processing

Multiple Target Tracking

Evolution of the Universe
Optimization of Oil Well
Placement -

Voyager Data from Neptune
Computer Chess

-18-

Table 1C. Conclusions of Survey of Applications

About 50% of applications clearly run well on SIMD machines.
About 90% of applications scale to large SIMD/MIMD machines.

Natural Support
Category Number | Fraction Hardware
Total Class
I: Synchronous 34 04 Iand II SIMD
Spatially
Connected
II: Loosely Synchronous 30 036 MIMD Distributed
(not Synchronous) 0.76 Memory
I: Embarrassingly 6 0.07 SIMD
Parallel
I or II: Embarrassingly MIMD Distributed
Parallel
but asynchronous and 6 0.07 Memory
needs MIMD
Unclear
III: Truly Asynchronous 8 0.1 Unclear Maybe MIMD
(Spatially connected) Scaling | Maybe Shared Memory

-19-

Table 2: Problem Architecture of 14 Selected Caltech Parallel Applications

Problem Does SIMD
Application Architecture Perform Well
QCD I - Regular Yes
Continuous Spin I - Regular Yes
(High T¢)
Ising/Potts I - Regular Yes
‘Models
Strings III - Embarrassingly Parallel (forall) No
Particle Dynamics
O(NlogN) II - Irregular Maybe
O(N*N) I - Regular Yes
Astronomical III ~ Unknown
Data Analysis
Chemical Reactions
H + H2 Scattering I - Regular + forall Probably
e~ + CO Scattering I - Regular + forall Probably
Grain Dynamics I - Regular Yes
Plasma Physics II - Can Be Irregular Probably
Neural Networks II - Typically Irregular Sometimes
Computer Chess I Asynchronous No
Multi-target Tracking II - Irregular Maybe

-20-

Table 3: Performance of a Climate Modelling Computational Kernel

Code Machine Performance Mflops
Original C CRAY Y-MP (1 head) 15 Old Code
Fortran 90 8K CM-2 66
(CM Fortran) (problem too small)
New
Fortran 77 CRAY Y-MP 20
Generated from Fortran 90
Portable
NCUBE-1 (16 node) 33
Fortran 77 + hypercube
Message Passing
Generated from , code
Fortran 90 NCUBE-2 (16 node) 20
hypercube
Intel i860 (16 node) 80
hypercube

In each case only minor [obviously needed] optimizations were performed.

-21-

Table 4 Fortran 90D for Synchronous (SIMD) and Loosely Synchronous (MIMD) Data Parallel

Programming (about 90% of Scientific and Engineering Computations)
Program Class Language and Environment Features

a) I-Regular Geometry ~pure” Fortran 90 with arrays of values
eg., full matrix Need decomposition directives in Fortran D
eg. (finite difference
eg., Monte Carlo

b) I-Regular+II-EP Add forall to Fortran 90
eg., chemical potential
and dynamics problems:
Calculate matrix elements (needs forall)
full matrix algerbra (Class I) for energies.
and cross sections

¢) 1/10-Regular Topology Add arrays of pointers
but irregular geometry to arrays of values. Need new
eg., finite element run-time library as in PARTL

d) "True" Loosely Synchronous (II) New data structures in Fortran 90D
Irregular Problems
eg., High level image processing
eg., Multiscale simulations
Problem architectures are more general
than that of array.

e) HIICG-I IIFG Fortran 90D modules
Complex System Simulations controlled by
(See Sec. I) object oriented

systems.

Domain Specific e.g. Ellpack, Lapack

1]
Highish level e.g. Parallel Fortran,
system PCN, Linda, C ++, C*
9
Lowish level e.g. Fortran or C
system plus message passing
g

Message Passing ' Portable Syntax but
o high performance

Virtual machine Machine specific
implementation

Figure 1: Five layers for a parallel software system

Nature ——pp Theory —Pp Model

. High level
Nar:tei:;zal software Low level
\ Virtual _ software
Computer Real
Computer

Figure 2: Theory and simulation as mappings

F77

L User

F77D

Seml automatic

Migration
parallelization

Fortran 90 —% Fortran 90D —» SIMD
User Straight forward MIMD F77+MP
parallelization
of high level Shared memory PCF

data structures

Figure 3: An integrated Fortran environment .

M Stars

Star O
Centroid

Figure 4: A duster of stars replaced by their centroid

-24-

o)
o)
o o o
O o)
o |°o| Py
OJlo
o]
o)
O
o)
9
O |o o|o
(o]
o

Figure 5: A complex (tree—like) data structure not well
expressed in sequential or parallel Fortran. "O" represents a star.

Overall Speedup

- & N=100

L L N=200 > 80% efficiency
+ N=500
N=1000
N=2000
N=5000
N=10000 /
N=20000 2l
- o N=50000
% N=100000 P
« N=200000 AT

g-° A
Number of particles .

>

x

o

10

llllil

|
AN
l.'\.
o.‘\
s.‘.\
A
t\
"_\

-
‘‘‘‘‘‘
-
®

4 P4
o
-

{
NN
\
\
3\
\
|

008_"!!1!' 1 [] t(vvvy‘ [l [vvyvqo‘ 9 [l [l

_‘Ililli i lilllll' lltlll‘ 4 L S S R L I I

) B B 2 A1

0.4 1 10 100
Number of processors

Figure 6: Speedup on the I-512 node NCUBE-1 hypercube for three different
astrophysical particle simulations.

- 26 -

10C

