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Abstract—A dual porosity model is derived by the formal theory of homogeniza-
tion. The model properly incorporates gravity in that it respects the equilibrium
states of the medium.

1. INTRODUCTION

We consider flow in a naturally fractured reservoir which we idealize as a periodic
medium as shown in Fig. 1. There are three distinct scales in this system, the pore
scale, the scale of the average distance between fractures, and the scale of the entire
reservoir. The concept of dual-porosity [4], [10] is used to average the two finer
scales in such a way that the pore scale is recognized as being much smaller than
the fracture spacing scale. The fracture system is modeled as a porous structure
distinct from the porous structure of the rock (the matriz) itself.

matrix 2¢,

fractures .Q}

Fig. 1. The reservoir 2. Fig. 2. The unit cell Q.

Dual-porosity models can be derived by the technique of homogenization (2], (3],
[6] (see also the general references [5], [7], and [9]). Briefly, we pose the correct
microscopic equations of the flow in the reservoir and then let the block size shrink
to zero. The resulting macroscopic model is formulated in six space dimensions,
three of them represent the entire reservoir over which the fracture system flow
occurs. At each point of the reservoir, there exists a three dimensional, “infinitely
small” matrix block (surrounded by fractures) in which matrix flow occurs.

For single phase, single component flow, it is recognized that diffusive, gravita-
tional, and viscous forces affect the movement of fluids between the matrix and
fracture systems; however, only diffusive forces are easily handled (see, e.g., [1], [4],
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For the matrix,

¢%p(p‘) — eV - [u7 o(p*)k(eVD® — p(p)ges)] =0, € 02, (4a)

PE=d (T (P) + (7 —1)(zs — £5(2)) + ), z € 0%, (4b)

On each Q¢(z), we need to define (¢. For a given P¢, we can find for each constant
¢¢ the solution p¢ of the steady-state problem corresponding to (4). So, for the
given fracture pressure P¢, we take the (¢ which gives rise to the p¢ that satisfies

/ $o(5°) dz = / $0(p%) d, (5)
Q. (z) Q¢ ()

where p¢ is the steady state solution of the unscaled problem corresponding to (4),
given by removing the two ¢’s appearing as coefficients in (4a) and replacing (4b)
by p* = P¢. (In the case of an incompressible fluid, simply take (¢ = 0.)

This e-family of microscopic models satisfies the following:

(i) Darcy flow governs the reservoir, and it does so in the standard way when
e = 1 (since then (¢ = 0);

(ii) For each €, Darcy flow occurs in the fractures and within the scaled ma-
trix blocks (i.e., if any matrix block Qf, is expanded to unit size Qm, the
transformed equations indicate that Darcy flow results);

(iii) If the fracture system is in gravitational equilibrium in the vicinity of a
block, then the boundary conditions on that block reflect this gravitational
equilibrium;

(iv) For fixed fracture conditions around any matrix block, the steady state ma-
trix solution gives rise to the same mass as calculated from the steady-state
solution of the unscaled matrix problem.

We require (iv) so that mass is conserved, since when we scale the matrix problem
with (ii)-(iii), we change the pressures which may change the total mass. Under
steady-state conditions it is easy to account for any such spurious changes.

We remark that the standard microscopic model [2], (3], [6] replaces (4b) with
p® = P¢, omits (5), and to be consistent needs to have p(p¢)g replaced by ep(p¢)g
in (3b) and (4a). The novel expression (4b) can be viewed as a scaled continuity of
pseudopotential, since we can rewrite it as

»7H(p) = (&(2) + €7 (23 — &5(2)) + () = 71 (P°) — g
The macroscopic model: For the fracture flow,

9 oo _1_/ 9 0
éatp(P )+ 0] Qm«ﬁatp(p )dy

=V [pp(P°)K(V.P® — p(P%)ge3)] =0, z€ R, (6)
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for some m(z,t), where the w;(y), j = 1,2, 3, are periodic across Q and satisfy

~V, - (Vywi) =0, ye gy, ()
Vywj-v=—ej-v, y€iQn. (9b)

Recognizing that (™! — 1)(z3 — €5(z)) ~ (1 — €)y3, we have (7) from the €® terms
of (4).

We now consider (5). First, (4) or (7), without the time derivative term, implies
P° =9 (71 (P°) + ys + (°). For p%, the e~2 terms of its defining equation and the
¢” terms of its boundary condition imply 5° = P°. Now a rescaling shows that

i BRZGES L 20> 5 (2,0.1)) d

=0

for some p‘ depending on the P%’s and on (. A similar expression holds for the
right side of (5), and so the €® terms of (5) give the definition of {° as (8).

Finally, the €® and €! terms of (3a) and (3b) can be analyzed exactly as in the
standard model [2], [6] to give (6), and the tensor K is seen to be given by

K* Ow;
K,"=—-(/ —Ldy + (5,">; 10
= Fav+iens, (10)
K is symmetric and positive definite (see, e.g., [3]).
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