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Abstract

Projection methods for sparse eigenvalue problems, (like the Lanczos and Arnoldi methods)
are useful for computing a few eigenvalues and eigenvectors of a large sparse matrix. These
methods compute approximations lying in some small dimensional subspace such as a Krylov
subspace. Often one is interested in computing certain eigenvalues and vectors which are not well
approximated in a Krylov space and so one uses some form of preconditioning (e.g. polynomial
preconditioners). In this paper some other methods for preconditioning like relaxation are
considered and it is shown how they may be useful in applications like detecting Hopf bifurcations
and computing small singular vectors of sparse matrices.

1 Projection Methods

In many applications we are faced with the problem of computing eigenvalues and eigenvectors of a
large, sparse, and in general non-symmetric matrix A € RNXN  Usually, only certain eigenvalues and
corresponding eigenvectors are required, being specified as either the ones closest to some complex
number g or the ones in some part of the complex plane, (e.g. the right-half plane), etc. A related
problem is the computation of specific singular values and corresponding singular vectors of a sparse
matrix.

By a sparse matrix we shall take to mean one that is prohibitively expensive to factor (by either
a QR or an LU decomposition). We must therefore rule out traditional algorithms for eigenproblems
like the QR algorithm. Projection methods are popular for such sparse problems because they can
avoid factoring the matrix. See Saad [10] for a survey of projection methods for sparse eigenproblems.

A projection method for computing a specified eigenpair of A computes a sequence of approximate
eigenpairs (™ A with z(*) € K,,, where K, is some small dimensional (i.e. much less than N)
subspace of RN. If ||Az() — A()z(")|| — 0 as n — oo, then the projection method is said to
converge. Note that with this definition, we sidestep the problem of condition that naturally arises
in the non-symmetric case, where the actual error may be much larger than the above residual.
However, this is the best we can expect for case of general non-symmetric matrices.

Let u be the desired eigenvector and 7 the orthogonal projection onto the subspace K. Clearly,
the best approximation to u in K, is 7u. However, this is in general impossible to obtain since u is
unknown, so a projection method will compute some approximation to mu as z(®), The situation is
illustrated in Fig. 1.
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Figure 1: Projection Method

To summarize, a projection method may be described by &1) the choice of the subspaces K, and
(ii) the manner in which the eigenpair approximation z(") A(") is chosen within the subspace Kp.
In §2 we describe Krylov subspace methods which are the most common type of projection method,
following which in §3 we will introduce the concept of a preconditioned projection method, which
will not, in general, be a Krylov space method. In §4 we consider computing certain singular vectors
and singular values of a matrix and give a preconditioned projection method for this problem. In
§5 we turn our attention to question (ii) above, and suggest using a minimum residual approach
to compute the eigenpair approximants. Finally we present numerical experiments in §6 and our
conclusions in §7.

2 Krylov Subspace Methods

Common projection methods like the Arnoldi and Lanczos algorithms [12, 11] are examples of Krylov
subspace methods. The subspace K, is chosen as the Krylov subspace

K, = span[z®, Az®,..., A" 1z(O], ®)

where z(%) is some starting vector chosen randomly. So in particular K; C Ki41 € .., dim(K,) = n,
and a vector v € K,, is of the form v = p(A)z(o) where p is a degree n — 1 polynomial. To illustrate
the dependence of the behavior of a Krylov space method on the spectrum of A, we briefly review
some known results [11]. We assume that A has a complete set of linearly independent eigenvectors
{u;} and distinct eigenvalues (i.e. the generic case), and let the starting vector be expanded in this
basis,

N
2@ = Zaiuia (2)
o i=1
N
p(A)z® =" p(A)ui. (3)
=1






Let us focus on one particular eigenvector, say ui. Assume that p is normalized so that p(Ar) =1,
and also that ax # 0. Then

p(A)z© a; :
—_— —uill = — A.’ . . 4
B il = 1 Sr0 @
Using the above and the fact that wuy is the closest vector in K, to ug, we easily get the bound
llug = muell < | SO1=5 ) e~ ®)
- y i k )
i#k
where
ep”'= min  max|p(\)l (6)
P E Pn-1 i#k
p(Ar) =1

is the “degree of approximation” of the null function by degree n—1 polynomials satisfying p(Ax) = 1
on the set {\;,¢ # k}.

The influence of the spectrum of A on the Krylov method is now clear. The isolated eigenvalues
are associated with small values of e(®~1) and therefore the corresponding eigenvectors are likely to
be much better approximated in a given Krylov space K, than those corresponding to interior or
clustered eigenvalues, for which €(=1) is much larger. This is a basic weakness in the Krylov space
technique - convergence is slow for interior eigenvalues.

Of course, 7u; is not in general available, rather z(") is computed as some approximation to it.
A commonly used technique is the Galerkin approximation, in which the approximate eigenpair
(") A(") is chosen with z(®) € K, such that

(Az™ = A(MzM) 1 K,,. (7)

If V is an orthonormal basis for K,, then z(®) = Vy(®) for some y(™ € R™ and it follows from the
above that

VTAV = A)y(") (8)
i.e., the approximate eigenpair z(®_ A(®) corresponds to an exact eigenpair of H = VT AV, the
restriction of A to K,.

The Krylov space method as described above involves successive approximation in a sequence
of nested subspaces K; C K»... Ky, and therefore the process must terminate in at most N steps
since Ky = RN. This is however computationally infeasible in general since the amount of work
required per step grows as the dimension of the subspace increases. Therefore a restarted method
is used in practice, i.e. the computation is restarted after a fixed number (say s) steps with the
new starting vector chosen as z(#). In such a restarted method the computational cost per step
is bounded, but the finite termination property is naturally lost, and in fact, the process may not
even converge. The Restarted Arnoldi Iteration, see [11], is a restarted Krylov space method as
described above.

The Lanczos [12] algorithm is also a Krylov space method, and in the symmetric case is identical
with Arnoldi’s method. In the unsymmetric case, though the subspaces are still Krylov spaces,
the eigenpair approximation is computed differently from that described above (see [11]). Further,
a three term relationship between the vectors keeps the computational cost per step constant, so
restarting is not generally necessary. However, in the unsymmetric case multiplications of vectors by
AT as well as A are required, which firstly may not be practical in some applications, and further may
cause difficulty in parallel implementations. Also, recovering the eigenvectors becomes much more
expensive in the Lanczos approach and of course there are stability problems in the unsymmetric
case. We do not consider the Lanczos approach in this paper; for some recent work on stable versions
of the unsymmetric Lanczos algorithm see [3].






3 Preconditioning:

As we have seen in the previous section, the convergence of a Krylov space method to a particular
. . « N . ” (n—l) . . « e

eigenvector u; is dependent on the “degree of approximation™, &~ , which implies in general slower

convergence for the interior or clustered eigenvalues. In certain situations however, it is precisely

these eigenvalues and eigenvectors which are of interest. Preconditioning techniques are therefore

desirable to accelerate convergence in such situations.

In the context of iterative methods for linear systems preconditioning means replacing the prob-
lem Az = b with an equivalent problem A% = b, and indeed, a variety of such preconditioning
techniques are available. For the eigenproblem the corresponding preconditioning method is to use
a spectral transformation, i.e., instead of determining the eigenvalues of A, we work with f(A)
instead. If f is analytic on the spectrum of A, the eigenvalues of f(A) are f(A;) and the eigenvectors
are still u;. One example of this type of preconditioning is “shift and invert”, i.e. if the eigenvalue
closest to y is desired, we work with the matrix

(A—p)t

Typically the shift u is also refined as better approximations to the eigenvalue are obtained. How-
ever, this involves solving linear systems at each step of the process and may not be feasible in
situations where the matrix is too large and sparse to be factored often. Another popular spectral
transformation is to use some polynomial for f, such as a Chebyshev polynomial which is small on
the unwanted parts of the spectrum and large near the desired eigenvalues (i.e., some approxima-

tion to the optimal polynomial sﬁ"_l)). One disadvantage then becomes the spurious eigenvalues
obtained when f(A) = v is solved to recover the eigenvalues of the original matrix A.

A popular alternative to using a spectral transformation is to precondition the vectors in the
projection method. For example, a polynomial preconditioned restarted Arnoldi method [11]
would perform s steps of the Arnoldi process, and then restart using q(A):r(") rather than z(*), where

. . . . . N . (n=1) .

q is some polynomial that approximates the desired optimal approximating polynomial € , like
a Chebyshev polynomial. Note that the resulting projection method is a restarted Krylov method
with a different restarting technique. The preconditioned projection method we will propose will
also precondition the vectors, but rather than apply the preconditioning only at the restarting step,
we will precondition each new vector before adding it to the subspace. The resulting subspaces will
therefore no longer be Krylov subspaces. Also, we will not use polynomials (in which case we would
merely recover the spectral transformation method), but “relaxation”, as is described below.

Relaxation for eigenproblems
Ruhe [9] proposed the following relaxation method for sparse symmetric eigenvalue problems. If
the exact eigenvalue p is known, then it may be possible to use an iterative method such as SOR to

solve the singular system
(A-plhy=0
for the eigenvector y. Ruhe uses such an iteration with approximate eigenvalues p; which are
updated at each step of the iteration using the Rayleigh quotient of the current vector iterate y,
_ y’I{Ayk
He = —71. -
Y Yk

The behavior of such a scheme for computing a specified eigenvalue and the corresponding eigen-
vector is dependent on the behavior of the iterative method used on singular systems. Iterative
methods for singular systems have not received a lot of attention, some important references are






[5, 7] and a recent survey can be found in [2]. If A is singular, and A = M — N is a splitting with
M nonsingular, then the iterative method

Zr41 —— M7 'Nzy

is said to converge if limg_ oo zi lies in the null space of A. Note that since A is singular, Az =0
for some z, i.e. Mz = Nz, so the iteration matrix has one as an eigenvalue. In [5] it is shown that
the convergence depends on the largest of the remaining eigenvalues of M~1N.

Davidson’s method

Davidson [1] proposed a projection method for the symmetric eigenvalue problem that uses a
particular kind of relaxation as preconditioning. In Davidson’s method, the subspace K, is built up
as follows. Let V = {vy,...vn—1} be an orthonormal basis for K,_1 and let z(®=D X("=1) be an
approximate eigenpair for A computed by a Galerkin process using K,_1. The new vector

Yn = (D _ A("—l))_lAz("-l) (9)

is formed where D is the diagonal of A. This vector is orthogonalized with respect to the vectors
V to obtain vy, thus forming the basis for K. Morgan and Scott (8] noted that the new vector yn
in Davidson’s method is nothing but the correction produced by a Jacobi iteration for the nearly
singular system

(A= A1)y=0 (10)

starting with z("~1) as initial guess.

General Preconditioned Projection Method

The relaxation scheme of Ruhe converges only under restrictive assumptions and Davidson’s
method uses only the simple Jacobi relaxation scheme. As a natural combination of the above ideas,
we consider projection methods using a general relaxation preconditioning. We will also consider
general unsymmetric matrices unlike the above two methods. Of course, in practice a restarted
method must be used for the same reason as in the Krylov space methods. We summarize this
Relaxation Preconditioned Projection algorithm in Fig. 2. The algorithm attempts to find
the eigenvalue closest to # € C and the corresponding eigenvector, therefore the eigenvalue estimate
is kept constant at g for the first p steps. The restart parameter s and a starting vector z also
need to be given. It should be noted that certain implementation details have been omitted in the
algorithm as presented in Fig. 2 for clarity. For example it is clearly redundant to have to compute
H = VT AV from scratch at each step as indicated (i.e. O(nk?) work), rather, if the vectors AV are
maintained along with V, the new H can be constructed from the previous step with O(nk) work
(such details will also be omitted in the presentation of other algorithms).

Note that the applying one step of the iterative method based on the splitting A = M — N for
the equation (A — A®)T)z(*) = 0 yields that vector (I — M~'(A - A®) 1))z Since z(*) already
lies in the subspace V, only the correction M~1(A — AT )z(¥) is added to the subspace.

The convergence of the algorithm can be understood by noting that once the eigenvalue estimate
A(®) has almost converged, the algorithm is nothing but a projection method using the Krylov space
of the matrix B = M~1(A — MI). The convergence is therefore governed by the separation of the
zero eigenvalue of B from the remaining eigenvalues. The ideal choice for the splitting matrix M ~!
is some sort of pseudoinverse, for if

Ai—2A

A— X = P! ) ) P (11)
N-1—






Algorithm RPP(4,z,u,p,s)
do
v = “;"-’“;; AO® = y4: count = 0;
fork=1tos
1. Galerkin Step:
V=[vo,...,va-1)}; H= VT AV,
(z®), (%)) = eigenpair of H with A®) closest to A1),
£z(8) = V2(¥); count = count + 1;
if (count > p) A®) = X(®) else AE) = \(k=1). endif
2. Relaxation Step:
Let (A — A®¥)I) = M — N be a splitting, M nonsingular;
y B = M-1(A- 2B )z(®);
v =y — Ef;ol h;iv;, where h
are chosen so that vy Ly; fori=0,...,k—1;
Uk :,, )
3. Convergence check:
if (||(A — AXB)z®)|| < tol) End,;
endfor
vy = z(k);
enddo

Figure 2: Relaxation Preconditioned Projection Method

and
1
A -

M-!=p-! e P (12)
AN—1—A

then

M~Y(A-AI)= P! P (13)
0

yielding the perfect separation, so that ¢(E=1) = 0 and convergence is immediate. In practice however,
we do not know such a preconditioner, and the standard iterative methods based on splittings, like
Gauss Seidel, SOR, etc. may be used instead. In the section on experiments we will present results
using the SOR relaxation for an application involving detecting Hopf bifurcations.

In the context of symmetric matrices, Davidson’s method is considerably more expensive per
step than the conventional Lanczos algorithm, because the Galerkin process is carried out using an
arbitrary basis rather than a Krylov basis for which a natural three term recurrence exists. There-
fore, even though the convergence is markedly faster for certain eigenvalues, the overall behavior
is not drastically improved over Lanczos. In the unsymmetric case however, when we compare the
preconditioned method to the Arnoldi process, the computational requirements per step are compa-
rable, and therefore it is hoped that the expected faster convergence of the preconditioned method
will translate into an overall faster algorithm.






fori=1to N
6; — (0z2(3) — bT 1) /aii
r) «— z1 + bie;

endfor

fori=1to N
6,‘ — (0::1(1') - a:-rzg)/a.-g
Ty = T2 + bie;

endfor

Figure 3: SVD Relaxation Step

4 Singular Values and Vectors

Related to the eigenvalue problem is the important problem of computing singular values and singular
vectors of a general matrix A € RV*N. Recall that the singular vectors u and v associated with the
singular value o of A satisfy

Au = ov (14)
ATy = ou. (15)
The singular values of A, {01 > 02,...,2 0N 2 0} are related to the eigenvalues of the symmetric
matrix 0 A
M= ( AT 0 ) ’ (16)
which are {oy,...,0N,—0ON,...,—01}.

A popular algorithm for computing a few singular values and vectors of a large sparse matrix is the
bidiagonalization algorithm which implicitly performs the symmetric Lanczos algorithm on M [4].
Therefore, the larger singular values of A, which are the extreme eigenvalues of M, are computed
rapidly, whereas the smaller singular values may take much longer to converge. This problem is
heightened if A is nearly singular, in which case the eigenvalues o, —on of M are clustered relative
to its other eigenvalues, and the convergence is extremely slow for these eigenvectors. Further, it is
often the case that the small singular values and vectors are in fact of great interest, for example in
continuation/path following applications near turning points (6]

We consider therefore the case when A is nearly singular and its small singular value and associ-
ated singular vectors are to be computed. We will use a projection method with a form of relaxation
preconditioning on the matrix M.

Relaxation

We would like to perform relaxation steps on nearly singular systems of the form (M -6I)z =0,
where 0 is an approximate singular value of A. Because of the structure of M, the diagonal elements
are 0, which, as we have assumed, is likely to be small. So the standard relaxations like SOR or
Gauss-Seidel will be unstable. We propose a modified relaxation for this problem as follows. The
Gauss Seidel relaxation proceeds by updating the ith coordinate of the vector, z(z), in order to
make the residual orthogonal to the principle vector e;, cycling through all i in this fashion. More
generally, the ith coordinate can be updated to make the residual orthogonal to ej, where j #1iin
general; and as we cycle through i, we make sure that all e; are covered. So let A = [oT,..., a',rv]T
and AT = [bT,...,b%]T. Also partition the vector z as z = [z],z7]7. Then one SVD Relaxation
step on (M — 6I)z = 0 is shown in Fig. 3.






Algorithmn SVD-RPP(4,z,p,s)
do
z — z/||z||2; Partition z = [zT,z]]7;
vo = z; vy = [-=T,27]T;
(%) = 0; count = 0;
fork=1tos
1. Galerkin Step:
V =[vo,v1...,v2-2)) H= VTMV;
(z®, 5(®)) = eigenpair of H with &) closest to o(*~1);
z(®) = vz(¥); count = count + 1;
if (count > p) o®) = ¢(*) else o(®) = g(*-1);
2. SVD Relaxation Step:
y®) =SVD-Relax(z(¥))

T T
Partition y®) = [y{",4{) |T;

T T
® = [P 1T

where h;; are chosen so that vog,vok41ly; for i =0,...,2k - 1;
V2k4+1 Vakt1ll3’
3. Convergence check:
if (J|(M — o®1)z(®)|| < tol) End;
endfor
vo = z(¥);
enddo

Figure 4: SVD Relaxation Preconditioned Projection Method

Now we can think of using a projection method preconditioned with the above relaxation to
compute the eigenvector of M corresponding to one of its small eigenvalues, say on- The singular
vectors of A can then be read off from the components of this eigenvector, which is just [uT,oT)T.
In numerical experiments this approach was found to converge faster than the bidiagonalization
algorithm; but it was noticed that the presence of the eigenvalue —on close to o caused oscillations
which were slowing the convergence. However if we attempt to capture the invariant subspace
associated with oy and —oy instead, the convergence is much faster. We use the fact that if
z = [zT,z]]T is an eigenvector of M corresponding to on, then £ = [-zT,zT]7 is an eigenvector
corresponding to —an. Therefore, once we have an approximate eigenvector £ corresponding to on
which we add to the subspace, we also form the vector # and add that to the subspace as well. In
Fig. 4 we summarize the SVD Relaxation Preconditioned Pro jection algorithm for computing
singular vectors associated with the small singular values of A. As before, a restart parameter s,
as well as a starting vector £ € R?M need to be provided. The initial guess for on is kept at zero
for p steps in order to ensure convergence to the smallest singular value. The procedure SVD Relax
incorporating the relaxation from Fig. 3 is used.

Note that each step of algorithm SVD-RPP requires twice the number of matrix vector multiplies
as RPP, also since V consists of 2k columns at step k, the Galerkin approximation calls for solving
a 2k x 2k problem rather than a k x k problem at each step. In Section §6 we will present numerical






experiments using the above algorithm and also compare it to the bidiagonalization algorithm.

5 Minimum Residual Algorithm

In the previous sections we have discussed projection methods in which the subspaces K,, are precon-
ditioned and are therefore no longer the traditional Krylov subspaces. We now turn our attention to
the eigenpair approximation within each subspace. The question of the best eigenpair approximation
in K, may be formulated as

min l|Az — 6z||. (17)

z€eK,
0 ~ close to
desired eigenvalue

For the moment assume that 6 is fixed, use the ||.||; norm, and let V be an orthonormal basis for
K, with y such that z = Vy. Then we have a least squares problem which is solved by choosing y
as the eigenvector corresponding to the minimum eigenvalue of

VT(A-0D)T(A-6I)V. (18)

Now, in case A is symmetric, the above is nothing but VT(A —6I1)%V, and y can therefore be chosen
as the eigenvector corresponding to the eigenvalue of smallest magnitude of

VT(A-06I)V =VTAV - 41.

Allowing 6 to vary, we see that this is the same as the Galerkin approximation. So in the symmetric
case, the Galerkin approximation also minimizes the residual over K.

Of course, this is no longer true in the general unsymmetric case. We have so far been using the
Galerkin approximation to compute approximate eigenpairs (™ A(?) with (") € K,,. In general this
strategy works well even in the non-symmetric case when a number of eigenvalues and eigenvectors
are to be determined [11]. However, in case we are interested in computing only a few specified
eigenvectors we should think of minimizing the residual rather than doing a Galerkin approximation.

The problem (17) is in general quite difficult, however, if we keep 8 fixed then y can be chosen
as the eigenvector of (18). One way to view this procedure is the following. If § were an exact
eigenvalue, then by minimizing the residual we are finding z € K, such that

(Az — 0z)L(A — 0I)K,, (rather than K,). (19)

Using the terminology of Saad ’89 [11], this is an “oblique” projection method as opposed to the
Galerkin approximation which is an orthogonal projection method. Once we have computed the
eigenvector estimate z, the eigenvalue estimate remains to be updated. For this the Galerkin ap-
proach is used. However, if we perform both the minimum residual as well as Galerkin approxima-
tions at each step, the computational cost essentially doubles. Therefore in practice we update the
eigenvalue estimate only once every r steps, where r is usually 3 or 4, and use the Galerkin approx-
imation for both the eigenvalue and eigenvector in this case. In the remaining steps the eigenvalue
estimate is kept constant while using the minimum residual approximation for the eigenvector. This
approach is combined with the preconditioning discussed in the previous sections, obtaining the
Preconditioned Projection - Minimum Residual algorithm shown in Fig. 5. The quantities
z,s,p and p are assumed given as in Algorithm RPP of Fig. 2, as well as r - the number of minimum
residual steps between Galerkin steps.






Algorithm PP-MR(A4,z,u,p,s,r)
do
vo =55 A0 = m
count = 0; rcount = 0;
fork=1tos
1. Eigenvalue approximation:
V= [1)0, R v(k—l)];
if (rcount = r) {Galerkin Step}
(z®),A(®)) = eigenpair of H = VT AV with AE) closest to A(F—1);
if (count > p) A®) = A(*) else A(¥) = A(*-1); endif
else {Min. Res. Step}

k) = \(k-1),
2(¥) = smallest eigenvector of VT (A — X)N)T(A - AWI)V;
endif

z(¥) = V2(5): count = count + 1;
2. Relaxation Step:
Let (A —A¥)J) = M — N be a splitting, M nonsingular;
y(k) = M—I(A p— A(k)I)z(k);
Vv = y(k) - Zf;ol h.-kvg, where h,'k
are chosen so that vp Llv; fori =0,...,k—1;
Uk vvk 2;
3. Convergence check:
if (||(A = X*)1)z(*)|| < tol) End,;
endfor
Vo = x(");
enddo

Figure 5: Preconditioned Projection - Minimum Residual Algorithm
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6 Numerical Experiments

We present numerical results for each of the algorithms discussed in the previous sections, i.e. the
two methods for eigenvalues and eigenvectors - RPP and PP-MR and the small singular vector
algorithm SVD-RPP. Our first test example, taken from [11], models the concentration waves in
reaction-diffusion interaction of chemical solutions in a tubular reactor. The concentrations z(t, z)
and y(t,z) of two chemical components, where 0 < z < 1 is the space coordinate and ¢ time, are
modeled by the system

8 D, 8%z

-a_j- = L2 atz + f(ziy) (20)
05} D, 8%

5?— = —Lé' ——atf +9(z,9) (21)

with Dirichlet boundary conditions. In the so called Brusselator wave model we have

flz,y) = A—(B+Dz+3s% 22)
o(z,y) = Br-—z% (23)

and there exists the trivial stationary solution # = A,§ = B/A. The linear stability of this steady
state is examined by checking whether the eigenvalues of the J acobian at Z,y have a positive real
part. For this example the problem is anlaytically solvable. In [11] the parameters are taken to be
D, = .008, D, = .004,A =4,B = 545. It is known that at L =~ .51302 a pair of purely imaginary
eigenvalues appear, causing a Hopf bifurcation to a periodic solution; we take L to be this value.

An eigenvalue of the discretized Jacobian closest to zero was computed using the restarted
Arnoldi, RPP and PP-MR algorithms. The SOR iteration was used as a relaxation preconditioning,
i.e. the splitting A= M — N in algorithms RPP and PP-MR was

M=(D+wL)and N=(1-w)D-U (24)

where A = L + D + U with D diagonal, L strictly lower and U strictly upper triangular. A 100
point discretization was used, resulting in the Jacobian A being a 200 x 200 matrix. Fig. 6 compares
the performance of the three algorithms. A restart parameter of s = 20 and relaxation parameter
w = .95 was used. The eigenvalue approximation was updated every 3 steps in algorithm MM-PP,
i.e. the parameter r = 3.

We used a convergence threshold of 1075, for the residual norm ||Az — Az]|2. Looking at Fig.
6, we first notice that the Arnoldi algorithm failed to converge even after 600 iterations. Algorithm
RPP performed better and converged in ~ 490 iterations, and PP-MR was the fastest, converging in
only 215 iterations. We also observe that in all three algorithms the residual norm oscillates. This is
because we are restarting after every 20 iterations which reduces the dimension of the subspace and
consequently the residual norm initially increases immediately after the restart step before decreasing
again. We also notice that PP-MR, which incorporates the minimum residual steps, exhibits a much
larger amplitude of oscillation. We do not as yet have an explanation for this, but it appears that
the minimum residual steps cause a much more rapid decrease in the residual than the Galerkin
steps alone, thus the convergence threshold is reached much faster.

Experiments with algorithm PP-MR using different values of the relaxation parameter w were
also carried out and the results are displayed in Fig. 7. Each line corresponds to experiments with a
different starting vector, and two sets of experiments were carried out, with N = 100 and N = 200
respectively. In the N = 200 case the restart parameter was s = 20, whereas for N = 100 we used
s = 15. The effect of the value of w is not quite clear from the experiments, since the starting vector
can also make a difference in the convergence. We also mention that in all the experiments, the
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Iterations of SVD-RPP
with different starting vectors
11272183 [102] 99

Table 1: Performance of SVD-RPP, N = 100

Arnoldi algorithm failed to converge, even after 600 iterations in the N = 200 case and 300 iterations
in the N = 100 case.

For the algorithm SVD-RPP, we constructed the following test problem. First we consider the
matrix A

B -1 4 a ... 0

A= - B where B = b 4 (25)
o g o
-1 B 0 ... b 4

with a = —1+ 6, b= —1 — §. We take §, the “asymmetry”, to be 0.5. Let ) be an eigenvalue of A.
We create an almost singular matrix A from A as

A=A-XI+AI (26)

where A is set to a small value (we used A = 10~3). The matrix A will have a small singular value
of O(A). Algorithm SVD-RPP was used to compute the smallest singular value o and associated
singular vectors u and v of a matrix of size 100 of the form A. A restart parameter r = 6 was used
and the iteration was carried out till the residual satisfied

|Au — ovl|z + ||ATv — oull2 < 107°. (27)

(Note that using a restart parameter r = 6 means that subspaces of dimension at most 12 are
searched, since the SVD algorithm uses 2k vectors at each step.) The number of iterations required
for convergence with five different starting vectors is shown in Table 1.

We also ran the Lanczos bidiagonalization algorithm on the same problem. Without any kind
of reorthogonalization, that algorithm failed to converge even after 200 iterations. With full re-
orthogonalization, (i.e. guaranteeing finite termination in N steps), the residual for the smallest
singular value decreased to only .1 after 90 iterations, then decreased sharply because of the finite
termination. Of course full reorthogonalization is essentially impractical, since in the final stages
of the process we are solving SVD problems of order N at each step! Nevertheless, the extremely
slow convergence of Lanczos even with full reorthogonalization for the small singular value is to be
noted. The bidiagonalization algorithm can also be used in a restarted manner, i.e. with reorthog-
onalization with respect to only the previous s vectors. With s = 12 and s = 24 respectively, the
algorithm failed to converge in 200 iterations.

To conclude, we found both algorithms PP-MR for eigenvalues and eigenvectors as well as SVD-
RPP for singular values and vectors to perform favorably compared to the traditional methods like
Arnoldi and Lanczos bidiagonalization.

7 Conclusions

We have considered some projection methods for computing specific eigenvalues and corresponding
eigenvectors of general sparse matrices which are prohibitively expensive to factor.
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Traditional Krylov space methods converge slowly to the eigenvalues interior to the spectrum, so
we used relaxation preconditioning to accelerate the converence of the projection method in such a
situation. The effectiveness of the traditional Galerkin approximation in these cases is also question-
able and an alternative, the minimum residual approach, was proposed and shown to be superior.
The resulting algorithm was tested on a model problem, the Brusselator wave model, and performed
better than the Arnoldi algorithm (which in fact failed to converge). A preconditioned projection
algorithm was also proposed for the important problem of computing the small singular vectors and
associated singular values of a sparse matrix. Experimental results comparing this algorithm and the
Lanczos bidiagonalization algorithm were also presented. The experiments indicate that both these
algorithms can be superior to the traditional Arnoldi or Lanczos approaches for certain problems.

An important extension of the preconditioned projection method approach presented here would
be to extend the technique to computing invariant subspaces, i.e. instead of computing a specified
eigenvalue and eigenvector, one is interested in an invariant subspace X € RN*4, such that

AX=XB

with B € R4%4_ In this case a number of questions arise. Firstly, it is usually desirable to compute an
orthonormal basis for the subspace, which may not neccesarily be a basis of eigenvectors, for example
if the eigenvalue is multiple or a real basis is sought for a pair of complex conjugate eigenvalues. The
form of relaxation preconditioning to be used is no longer obivious. Another question is an eficient
generalization of the minimum residual aproach to this case.

It should also be noted that the relaxation preconditioning presented here may be combined
with some form of polynomial preconditioning as well, and this may lead to even faster algorithms.
The use of other types of preconditioners like incomplete factorizations or domain decomposition
also need to be investigated in the context of eigenproblems. Finally, the algorithms presented here
are likely to be well suited for parallel and vector computer architectures because of the reliance
on matrix-vector products rather than factoring the matrix; also parallel preconditioners such as
relaxation using red-black or multicolored orderings may be used as well.
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