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Abstract

The choice of the centering (or barrier) parameter and the step length param-
eter are the fundamental issues in primal-dual interior-point algorithms for linear
programming. Various choices for these two parameters have been proposed that
lead to polynomial algorithms. Receﬁtly, Zhang, Tapia and Dennis gave conditions
that these choices must satisfy in order to achieve quadratic or superlinear conver-
gence. However. it has not been shown that these conditions for fast convergence
are compatible with the choices that lead to polynomiality. It is worth noting that
none of the existing polynomial algorithms satisfies these fast convergence require-
ments. This paper gives an affirmative answer to the question: can an algorithm be
both polynomial and superlinearly convergent? We construct and analyze a “large
step” algorithm that possesses both polynomiality and Q-superlinear convergence.

For nondegenerate problems. the convergence rate is actually Q-quadratic.

Key Words: Linear programming, Primal-dual interior-point algorithms, Polvno-
miality, Quadratic and superlinear convergence.

Abbreviated Title: A Quadratically Convergent Polynomial Algorithm

[NV]






1 Introduction

We consider linear programs in the standard form:

T

minimize ¢’z
subject to Az = b, (1.1)
z2>0,

where c,z € R*", b € R™, A € R™*"*(m < n) and A is assumed to have full rank m.

The first-order optimality conditions for (1.1) can be written

Az -
ATA+y—-c | =0, (z,y) >0, (1.2)
XYe

where A and y are dual variables, X = diag(z), ¥ = diag(y) and e has all components
equal to one. To facilitate our presentation, we will eliminate the dual variable A from
the above system (though such an elimination may not be advisable from a practical
point of view). Let B € R(*~™)xn be anyb matrix such that the columns of BT form a

basis for the null space of 4. Pre-multiply the second equation by the nonsingular matrix

(AT BT]|T. Notice that BAT =0, so

T -
(ATHy_C):(AA A+ Aly c))'

By — Bce

Since AAT is nonmsingular, A is uniquely determined once y is known. Removing the
equation for A, we arrive at the following 2n by 2n nonlinear system with non-negativity

constraints on the variables:
Az -

F(z,y)=| By—Bc | =0, (z,y) 20. (1.3)
XYe






for a vector v € R™. The symbol || - || denotes the ¢; norm unless otherwise stated.

The paper is organized as follows. In Section 2, we describe a general interior-point
algorithmic framework for problem (1.1) based on the nonlinear system (1.3) and give a
brief survey of existing results for algorithms that fall into this framework. In Sections 3
and 4, we specify our procedures for determining the step length and for choosing the
centering parameter. We state our algorithm in Section 5. Polynomiality is established in
Sections 6. Quadratic convergence for nondegenerate problems is established in Section 7,
and superlinear convergence for all problems is established in Section 8. Concluding

remarks are given in Section 9.

2 General Algorithm

Algorithm 1 (General Algorithm)

Given a strictly feasible pair (zq,y0). For k =0.1,2,..., do

Step 1 Compute the Newton step
Az , _
= —[F'(zr, )] 7 F (ks y&)
Ayl
and the centering step
Az

0
- | = Lol yelF'(zi, ye)] ™! ( ) .
Ayy

e

Step 2 Choose o € (0,1) and form the combined step

Az Azl Az
= + Ok c .
Ay Ayl Ayg

Step 3 Choose ai € (0, &), where

-1
" min( X Az, Y Aye)

-

Qe
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zero, since we must enforce the requirement ar < &; and & is not directly under our
control.

A number of existing primal-dual algorithms fit into the above general algorithmic
framework with different choices for the parameters o, and ai. For example, in the
primal-dual algorithm of Kojima, Mizuno and Yoshise [2], o4 is a constant and oy is
a particular function of o%. They showed that their algorithm requires at most O(nL)
iterations to reduce the duality gap by a factor of 27%. Other examples include the Todd
and Ye [8] primal-dual potential reduction algorithm and the Monteiro and Adler [6]

path-following primal-dual algorithm. Todd and Ye’s algorithm uses the choice
vn+v
where v is a constant. In Monteiro and Adler’s algorithm,

)

Uk:l—ﬁ

Cr =

where § is a constant (Monteiro and Adler actually used § = 0.35 in their analysis). In
both algorithms, a rather short step length «j is required. Furthermore, both of these
algorithms require at most O(\/nL) iterations to reduce the duality gap to 2-%. This
is the best complexity bound obtained for linear programming so far. Observe that all
three algorithms use constant . In each of the three cases if o denotes the constant
value of o, then @Q-superlinear convergence is possible (see (2.6)) only if

1
l-0c

ar —

b

which seems extremely unlikely.

In analyzing the convergence of Algorithm 1, a central quantity is

T
m = .zlcyk/n _ (2.7)
min( Xk Yie)

Since 1z{y, is the average value of the components of XiYe, it is clear that 7¢ = 1. In
all the above mentioned polynomial algorithms, it is essential that the sequence {7:} be

bounded.






exists in most real-world problems. For degenerate solutions, the best convergence that
has been established is Q-superlinear, as stated in Theorem 2.2.

Although all the existing polynomial primal-dual interior-point algorithms satisfy
assumption (ii) of Theorem 2.2, none of them satisfy assumption (iii), i.e., ox — 0
and ax — 1. In fact, in several polynomial algorithms, for example Todd and Ye's and
Monteiro and Adler’s, the values of o are close to one. From Zhang, Tapia and Dennis (9]
it follows that these algorithms will most likely have slow Q-linear convergence. Hence
while their global behavior may be excellent, their local behavior can be improved.

Recently, in a number of performance-oriented primal-dual algorithms, for example
the ones implemented by Choi et. al. [1], McShane et. al. (5] and Lustig et. al. [4],
very small values of o were used and also long steps were taken. Impressive numerical
results were obtained from these implementations though polynomial complexity bounds
are not known. Hence while their local behavior may be good, their global behavior is
in question from a theoretical standpoint.

In this work, we develop a primal-dual interior-point polynomial algorithm that gives
quadratic convergence for nondegenerate optimal solutions and superlinear convergence
for degenerate solutions. Hence, from a mathematical point of view, both the global
and the local behavior will be good. This new algorithm is still of a theoretical nature.
However, the fact that polynomiality and quadratic or superlinear convergence can be
achieved simultaneously by one algorithm provides motivation for practical implementa-

tions of the conditions ox = O(z7yi) and ax = 1 + O(zf yx) for fast convergence.

3 Determining the Step Length

In the previous section we mentioned that both polynomiality and superlinear conver-
gence essentially require that the sequence {7} be bounded. The most straightforward

way of accomplishing this objective is to explicitly enforce the uniform bound on the






we have
file) = fi = (fi = oufi*)a + spd’ (3.3)
and
k(@) = i1 = (1 - ow)al. (3.6)

Hence, fi(a) is a quadratics (so ff*(a) and f**(a) are piecewise quadratic) and f2*¢(«)
is linear.

For notational convenience, let us introduce the piecewise quadratic function
h(a) ¥ fF™(a) = % fi(a). (3.7)
It follows that condition (3.3) is equivalent to
h(a) >0, a>0. _ (3.8)

In determining ai we will use the following quantity:

o] ¥ min{a > 0 : &(a) = 0}. (3.9)

Recall that & is defined in Step 3 of the general algorithm (see Section 2).

Lemma 3.1 The quantity ] is well defined and o] € (0, &x). Moreover, condition (3.3)

is satisfied for all « € (0,a]].

Proof: Let us examine the function A(a). It follows from the definitions of vx and &
that
h(0) = ff = f2* 20

and
h(ai) = (k) — T fov®(&r) = =1 fi™ (&) < 0.

Hence it follows from the continuity of h(a) that h(a) has a root in [0,&k). When
h(0) > 0, h(a) obviously has a root in (0,&x). When A(0) = 0, it can be verified that
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We will also use the following quantity in determining ay:

of E min{a>0: H(a) = 0}. (3.15)

~ Analogous to Lemma 3.1 for condition (3.3), we have the following lemma for condi-

tion (3.11).

Lemma 3.2 The quantity of is well-defined and of € (0,é&x). Moreover, condition

(3.11) is satisfied by all a € (0,cal].

Proof: The proof is similar to that for Lemma 3.1, so we omit it. a

Analogous to the expression (3.10) for condition (3.3), we have for condition (3.11)
af = min{a > 0: fi(a) - L fe(a) =0, i =1,2,...,n}. (3.16)
For the sake of simplicity, we will enforce the conditions
Y% <1/2 and Ty > 2. (3.17)

The specific values in (3.17) do not constitute a loss of generality because they will only

affect expressions for some constants in our analysis. These values of 4; and I'x will result
in much simplified expressions for those constants.

From (2.2), we see that for fixed oi a larger step length ax will produce a larger

reduction in the duality gap. So it is always desirable to take the largest step length

' possible as long as other requirements are satisfied. Our procedure for determining the

step length ai is summarized as follows.

Procedure 1 (Step length Criterion)

Given

0 < v < min(1/2, f§**/f5*), max(2,f3**/f5") <T <n. (3.18)

Step 1 Choose i € [y, min(1/2, =/ f2*¢)] and Tk € [max(2, ff2*/fa**),I].

13






Lemma 3.4 Let ay be given by Procedure 1. Then

. (1 ,w‘)a.kfave (Fk - l)a.kfave
> k
@k > min (1, Tmin(s) ' max(es) . (3.19)
Moreover,
ax > min (1 —"——) . 3.20
selm (3.20)

Proof: From (3.9), af is a positive root of fi(a) — v f2**(a) for some index i. Noticing
that for « € [0, 1], f2**(a) is positive, and using Lemma 3.3, for all index i, a € (0,1] and

% 2> 0, we have

fila) = wfi(e) 2 fif - (fM® - 04 f2**)a + min(sk)a? — 7 f2**()
(™ =% f2e)(1 = @) + (1 = )or fo*°a + min(se)a?  (3.21)

2 (1 =)o f2a + min(se)a?

If min(se) = 0, then A(a) > 0 for a € (0,1]. Therefore, we will have o} > 1. Now assume
min(sk) < 0. Then the quadratic in the right-hand side of the last inequality in (3.21)

has a unique positive root
(1 = ye)oefi™
—min(sx)

ar =

Hence, if o < 1, from (3.21) we must have o] > &:. This proves that

> rmn( (1 = y)owfi ) . (3.22)
— min(sk)
Similarly, we can prove that
of > min (1, L= Doefi™) (3.23)
max(sk)

Combining (3.22) and (3.23), we obtain (3.19).
Finally, (3.20) follows from the facts that ||sk|lcc = max{— min(sk), max(sx)} and

Sl=w<1<&Te-1

| r—

This completes the proof. a
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Procedure 2 (Centering Parameter Criterion)

Given

o €(0,1),

I
©
W

|

Step 1 Compute wy from (4.2).
Step 2 Compute p} = min(p*, o /wy).
Step 3 Choose pi € (o' + p)/2, pt].

Step 4 Let ox = prwi.

Since ox = prwi and px € [p', p2], we have o, € [p'wk, ptwi]. In addition, we require

that o, be greater than the midpoint of the interval. This requirement is needed in our

proof of superlinear convergence. It is evident that oy is bounded away from one because

ok < o < 1. The reasons why the centering parameter is so chosen will hopefully become

clear as our discussion proceeds.

5 Algorithm Description

Now we formally state our primal-dual interior-point algorithm.
Algorithm 2 Given a strictly feasible pair (zo,yo). Choose (recall (3.18))
0 <7 < min(1/2, f§**/f3"), max(2,f5**/f3")<T <n,
and o € (0,1). Set p' = ¥%0/2n and p* = y2o/n (i.e., (4.4)). Fork=0,1,2,..
Step 1 Compute the Newton step and the centering step from Algorithm 1.

Step 2 Choose o by Procedure 2 and form (Azi, Ayk) from Algorithm 1.

Step 3 Choose ay by Procedure 1.
Step 4 Form (Zi41,Yk+1) from Algorithm 1.

17
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Hence, it follows from (3.11), (3.20) and Procedure 2 that

pkfave ) ( Pk) pl
> > = —
ar > min ( Bﬁ“"‘) 2 min (1, ST > T (6.1)

Substituting p' (see (4.4)) into the above expression, we obtain

2

oy
>

= 16Tn"’

The proof is completed by substituting the above inequality into (2.6) and noticing that
or < o. ] m]
The following corollary follows immediately from Theorem 6.1. By a standard argu-

ment, it leads to polynomiality assuming integral data.

Corollary 6.1 Assume zlyq < 2L, where L > 0 and v > 0. Then in at most O(nlL)

iterations, Algorithm 2 will produce (z,yx) such that z¥y, < 2-L.
Proof: From Theorem 6.1,
i ye < (1= §/n)*z3yo < (1 - §/n)*2

Let (1 — §/n)*2vL = 2-L and take the natural logarithm of both sides. We have k& =
—(In2)(1 + v)L/In(1 — §/n). Observe that for = € (0, 1)

In(1 - z) =-Z% -z

Therefore,
k< (In2)(1+v)L/(§/n) =O(nL).

This completes the proof. a

7 Quadratic Convergence

In this section, we will apply Theorem 2.1 to establish that under strict complementarity

and nondegeneracy assumptions our algorithm converges Q-quadratically. It can be
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and

( -1 ’-'Tyh/"
XiYie]!

T
=1 z yh/’:n
ay o |7 O(ziy), 45 [X“; < |+ 0(Ty),

\ 0/ \ 0 )

where the number of zero is m in py and p$, and n —m in g and ¢f.
Now we are ready to state and prove our quadratic convergence theorem.

Theorem 7.1 (Quadratic convergence)
Let (z.,y.) be a solution of problem (1.3) and {(zk,yx)} be generated by Algorithm 2.

Assume

(1) strict complementarity holds at (z.,y.),
(ii) z. is a nondegenerate vertez of (1.1),
(iii) p* is sufficiently large, e.g., p* > 16T.

Then {(zk,yx)} converges to (z.,y.) Q-quadratically and {X,Yie}, component-wise, con-

verges to zero Q-superlinearly.

Proof: We first prove o, = O(zfyk). Observe from Lemma 7.1 that for each index %
either the “p” terms ((p})’ and (pf)‘) or the “g” terms ((¢¥)* and (¢€)’) are O(zZyx).
Thus, the quantity w; (see its definition (4.2)) is O(zTys). So is & because 0% < p*wi.

Since wi — 0, from the choice of p} in Step 2 of we have for k sufficiently large
1 ©
pi=p" and px 2 S(s' +p"). (7.1)

We observe that if p* is sufficiently large, e.g., p* > 16T, (i.e., g% is not forced to approach
zero too quickly), then the step length ) will eventually be one, as can be seen from

(6.1). -
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and define the distance from o to the set I, as
dist(o, Zi) = min{|o — | : ¢ € T, }.
We choose o according to Procedure 2 with the additional restriction that

dist(ok, Zk) > mewi/(8n + 4). (8.3)

In other words, we require not only

% € [0.5(p' + p} Jwi, phuw] (8.4)

but also that o be bounded away from the set I by at least miwi/(8n +4). Since {7}
is bounded away from zero, we see from (8.3) that {dist(c%, Z¢)} is bounded away from
zero if {wk} is bounded away from zero.

The purpose of introducing condition (8.3) is to avoid the situation where P =
(pR)' + ok(pf)* (say) converges to zero but (pY)* and (p{)* do not. Although we believe

that this situation is extremely unlikely to happen, we have not been able to rule it out.
Lemma 8.1 The set of ox’s satisfying (8.3) and (8.4) is nonempty.

Proof: The length of the interval in (8.4) is mywi/2. Partition this interval into 2n + 1
equal sub-intervals, each having length 7wy /(4n + 2). If the interior of any one of the
sub-intervals does not intersect Iy, then the midpoint of that sub-interval will satisfy
. (8.3) and (8.4). Since I has only 2n points, it cannot intersect the interiors of all the
2n + 1 sub-intervals. This proves the lemma. a

Now we are well-equipped to prove our superlinear convergence theorem.

Theorem 8.1 (Superlinear convergence)
Let (z.,y.) be a solution of problem (1.8) and {(zk,yx)} be generated by Algorithm 2

with the restriction (8.3) on the centering parameter or. Assume
(i) strict complementarity holds at (z.,y.),
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Now in view of (8.5) we also have (pﬁg)‘ — 0. Similarly, we can prove that if q — 0,
then we have both (¢f¥)/ — 0 and (¢€) — 0. Therefore, for each index i, either (py )’
and (pf,)’, or (¢ff)* and (¢ ) converge to zero. Since all these sequences are uniformly
bounded (see the proof of Lemma 4.1), this leads to Wk, — 0 (see definition (4.2)),
contradicting the hypothesis that {wy,} is bounded away from zero. This proves that
wr — 0. Consequently o, — 0.

Now we prove a;y — 1. Note that (2.4) can be written as
Pk + gk = —e + ortzly(XaYa) e
Since 2zfy,(X,Yi) 'e is bounded above by 1/7, as g — 0, we have
Pk + qx — —e.

We have shown that for each i, either p, — 0 or gi — 0. Therefore, all p} and gl converge
to either 0 or —1. This again implies that &; — 1 (see (7.2)). In view of (6.1) and (7.1),
ai will eventually be equal to one if p* is sufficiently large, e.g., p* > 16I'. Hence,

l1<ar LG — 1.

This completes the proof. a

9 Concluding Remarks

In this paper, we have shown that the two fundamental parameters in primal-dual
interior-point algorithms for linear programming can be chosen in such a way that both
polynomiality and superlinear convergence are achieved. If the solution is a nondegener-
ate vertex, then in addition to superlinear convergence we have quadratic convergence.
The current practices in some of the state-of-the-art implementations of primal-dual
interior-point algorithms have the following common fundamental features. First, they

allow iterates to be very close to the boundary of the positive orthant; second, they
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