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Abstract.

A semicoarsening multigrid algorithm suitable for the kinds of problems arising in reservoir simulation has been
implemented on the Intel iPSC/2 hypercube. The method is an extension to nonsymmetric problems of a method in
(Dendy et al. SPE 18409). It performs well for strongly anisotropic problems and problems with strongly discontinu-
ous coefficients. For a test set of reservoir simulation problems, residual reduction factors for a full-multigrid V-cycle
range from .0022 to .19. The current codes achieve about 50% parallel efficiency in two dimensions and about 30%

parallel efficiency in three dimensions with about 4 processors for a grid with N unknowns.
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1. Introduction. Multigrid was first applied to reservoir simulation in the early 1980’s [3]. For
three-dimensional problems, multigrid was not found to be competitive with other solution methods
because of the large expense per cycle of performing alternating direction smoothing by plane in the
three coordinate directions z, y, and z. Subsequently, Dendy [6] reduced the cost of the method by
using more efficient 2-d multigrid solvers for the smoothing subproblems. More recently, Dendy et
al. [8] presented a semicoarsening version of multigrid for symmetric problems which performs well
for reservoir simulation problems, with about the same (sequential) CPU cost per cycle but much
simpler coding requirements than the previous multigrid methods.

We present an extension of this semicoarsening method to nonsymmetric problems. Among the
features of the method are promising intergrid transfer operators due to Schaffer [7]. We investigate
ways to implement the method efficiently on hypercube-type parallel processors, both to take ad-
vantage of current cost/benefit efficiencies of such machines and to predict how method performance
scales with future massively parallel distributed memory computers.

In the following five sections respectively we describe our method, describe several ways of
implementing it on hypercube machines, present convergence results, present parallel timing results,
and indicate future plans for this project.

2. The sequential method. Consider a one-dimensional problem resulting from the one-
dimensional pressure equation in reservoir simulation or any similar scalar second-order elliptic
partial differential equation. The nonzero structure of the resulting tridiagonal matrix is depicted
in Figure 1. Let P be the permutation matrix ordering the unknowns red-black. The resulting
red-black matrix PTAP is depicted in Figure 2.

In block form, the red-black linear system is

(1) Az =b

or

@ () (z)=(%)

The nonzeroes in Figures 1 and 2 are labeled so that each nonzero diagonal of A,., A, Asr, or
Aypp is labeled with a different letter. One way to solve (2) is to form and solve the smaller Schur
complement linear system

3) Aszp = b,
where

(4) A, = Aw — Awe AT Ary
and

(5) by = by — Apr A7 by,

and then backsolve
(6) Ty = A,-;-l(br - Arbzb)-

Note that in this one-dimensional case A, is tridiagonal like A.

Now consider a two-level multigrid method for the original system, where the black unknowns
are the coarse grid unknowns. The main steps in such a method are:

i) smooth on the fine grid

i) transfer the fine grid residual to the coarse grid and solve for the coarse grid correction

iii) transfer the correction back to the fine grid and add it in to the current solution

iv) smooth again on the fine grid



In the black-box multigrid framework (5] it is customary to construct the coarse grid system
A.z. = b, as follows:

o s (d ) (B o= w0 ()

Here b, and b, denote the current residuals, and are only equal to the original right hand side if
the current iterate is zero. Iy, denotes the coarse grid identity matrix: Pure injection is used for
interpolating coarse grid unknowns to black unknowns on the fine grid.

A key observation is that if

® Tyr = —Asr A7

and

©) T = —A:rlArb

then

(10) A = TorArrTry + TorAry + AvrTrs + Ay

(11) = A ATt Ars — Abe AT Ary — Abe AD A + Ase
(12) = —Apr A7t Ars + Ab

(13) =A,

and

(14) be = —Apr A=Lb, + by = by,

so that the coarse grid multigrid system is identical to the Schur complement system. If the smoother
on the fine grid solves exactly for the red unknowns in terms of the black unknowns, e.g., the smoother
is red-black Gauss-Seidel, then the two-level multigrid solver is an exact solver. Furthermore if the
coarse grid system itself is solved by a two-level multigrid solver, and so on recursively until the
coarsest grid system with one unknown is solved directly, the resulting multigrid V-cycle is a direct
solver.

Now consider a two-dimensional problem with a nine-point operator. The resulting nine-diagonal
matrix is depicted in Figure 3. Let P be the permutation matrix ordering lines of unknowns red-
black. The resulting red-black matrix PT AP is depicted in Figure 4.

As in the one-dimensional case, if Ty, = —Asr A} and Tpp = —A; Ars, then the coarse grid
system for two-level multigrid is exactly the Schur complement system A,z, = b,. However, the
Schur complement matrix is dense. Fill occurs for two reasons. First, A7} has dense diagonal blocks,
so Ty, and T,s have dense diagonal blocks. Second, extra fill occurs in direction 1. For instance, the
black unknowns corresponding to (i1,i2) = (2,1) and (4,3) are both connected to the red unknown
corresponding to (i1,i2) = (3,2) via Ty and Ti, terms. Elimination of red terms results in direct
connections between (2,1) and (4,3) in A, even though their indices differ by more than 1 in direction
1. The only way to avoid this extra fill is to allow connections in T}, and T in direction 2 only. The
locations in Figure 4 corresponding to connections in direction 2 only are the locations for diagonals
¢, g, k, and p.

Some new notation must be introduced to deal with connections in direction 2 only. Let an “I”
(resp. “r”) superscript appended to Ary or Asr denote the result of zeroing out all entries except
those corresponding to connection of a black unknown to a red unknown with a smaller (resp. larger)
index in direction 2. Then A,; = Al; + AT, and Ay = A} + Aj},. For example, in Figure 4, Al, may
contain nonzeroes on diagonals ¢, d, and f, A7, may contain nonzeroes on diagonals p, ¢, and r, Al
may contain nonzeroes on diagonals g, h, and m, and A}, may contain nonzeroes on diagonals k,
I, and o. Similarly, let diagl,(v) (resp. diagy,(v), diag}_(v), diag},.(v)) denote the matrix with the
same nonzero structure as A (resp. Ars, Abr, Apr) with the only nonzero entries obtained from
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vector v and put on the diagonal corresponding to connections of black unknowns to red unknowns
with lower (resp. higher, lower, higher) index in direction 2 and with the same index in direction
1. For example, in Figure 4, diag!,(v) (resp. diagl,(v), diag}.(v), diag},(v)) puts nonzeroes in the
locations of diagonal ¢ (resp. p, g, k).

With this notation, we define the following transfer operators due to Steve Schaffer at the New
Mexico Institute of Mining and Technology [7]:

(15) Trs = —(diagl, (A7 ALye) + diagly (A5 ATe))
(16) Ty = —(diagy, (7 A}, A7) + diag], (T A3, 47)))

where e is the vector of all ones.
We use (15) and (16) for transfer operators. We take the initial guess for the solution to (1) on
a given grid to be the best constant solution

bTe
(17) o = eT Ae e
rather than zero. Here (eT Ae)~! is precomputed and calculation of b7 e is very cheap, involving only
adds. For our smoother we use red-black line Gauss-Seidel with lines oriented in direction 1. This
completes the specification of our basic two-level two-dimensional semicoarsening multigrid method.
The adjective semicoarsening is used because the coarse grid is only coarsened in direction 2, while
usual “full coarsening” multigrid involves coarsening in both directions 1 and 2 simultaneously.

The method works particularly well for strongly anisotropic problems. Suppose connections are
much stronger in direction 1 than direction 2. Then line Gauss-Seidel is a good iterative method in
direction 1. Also, entries in A,, and A, are small, so entries in T;; and T3, are small, and by (7)
A, is a good approximation to A, (and As). Conversely suppose connections are much stronger in
direction 2 than direction 1. Then A,, is approximately diagonal, and Al,, AT;, Al., and Aj, are
well-approximated by diag’,(A%,), diagl,(Ar;), diagl.(Al,), and diag},(A},), respectively. Thus T,
and T}, are very good approximations to -—A,T,‘A,.z, and —Ab,-A,T,.l and hence the coarse grid system
is very close to the Schur complement.

This good convergence for strongly anisotropic problems is borne out in Tables 2, 3, and 4.
(Here ratio is the anisotropy ratio in (18).)

Now consider a three-dimensional model problem with a 15-point operator (a 3 point operator in
direction 3 tensored with a 5 point operator in directions 1 and 2). The resulting 15-diagonal matrix
is depicted in Figure 5. Let P be the permutation matrix ordering planes of unknowns red-black.
The resulting red-black matrix PT AP is depicted in Figure 6.

Again the same two considerations cause fill in the Schur complement matrix. Our notation to
deal with connections in direction 3 is similar to the two-dimensional case. For Figure 6, A!, has
nonzeroes only in diagonals a and b, A7, has nonzeroes only in diagonals c and d, A}_ has nonzeroes
only in diagonals e and f, and A}, has nonzeroes only in diagonals g and h. Also, diag!,(v) (resp.
diag?,(v), diag},.(v), diag},.(v)) has nonzeroes only in diagonal a (resp. ¢, e, g).

We would again like to use transfer operators (15) and (16). However, now A,, is a 5-point
operator which is expensive to invert. Hence, following Schaffer [7], we use one cycle of our two-
dimensional semicoarsening multigrid method to approximately solve the A., systems needed in
constructing T, and Ty, .

We use (17) for initial guesses and approximate red-black Gauss-Seidel plane relaxation for our
fine-grid smoothing step, where the two-dimensional semicoarsening multigrid method approximately
solves the plane Gauss-Seidel equations. This completes the specification of our basic two-level three-
dimensional semicoarsening multigrid method.

Note that a fine grid three-dimensional 7-point operator forms 15-point operators on the coarser
three-dimensional grids, and a fine grid two-dimensional 5-point operator forms 9-point operators
on the coarser two-dimensional grids.

Again this method works particularly well for strongly anisotropic problems. This good conver-
gence for strongly anisotropic problems is borne out in Table 5.
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We have used several standard multigrid cycling approaches. The “V-cycle” (Figure T) starts
on the finest grid with a two-level method and solves the resulting coarser grid system recursively
with another two level method, and so on until the coarsest grid system with one unknown is solved
directly. The “full multigrid V-cycle” or FMV cycle (Figure 8) generates an initial guess for the fine
grid system by preceding the fine-grid V-cycle recursively with another V-cycle on the next-finest
grid, and so on so that the very first calculation is a direct solve on the coarsest grid. The “initial
FMV cycle” or IFMV cycle takes the first cycle to be a FMV cycle and the remaining cycles to be
V-cycles.

Our 2-d sequential code requires about 30N words of storage, where N is the number of unknowns
on the fine grid. Our 3-d sequential code requires about 148N words of storage. This is a large storage
requirement for an iterative solver. It can be reduced if the matrix is known to be symmetric, if
single precision is acceptable, or if the fine grids are known to be 7-point in 3-d and 5-point in 2-d
rather than 15-point in 3-d and 9-point in 2-d.

3. The parallel method. We have implemented our method on distributed memory parallel
computers of hypercube type by partitioning the problem domain into subdomains and assigning
a rectangular subdomain to each node (processor). For each node, we pad local arrays by one at
the lower and higher bounds of each array in each direction. The padding areas are used as buffers
to exchange boundary information with neighbor nodes. Because the method mainly consists of
subtasks of the form

for all unknowns in direction i

perform task T in directions j and k
or
for all unknowns in direction i
for all unknowns in direction j
perform task T in direction k
where (i,j,k) = some permutation of (1,2,3), the parallelization tasks required in directions 1, 2, and
3 are essentially independent. Boundary data are exchanged as needed before loops. In the following
example the call to pad exchanges boundary data for array b in direction 2, as needed by loop 10.
call pad(2,b)
do 10 i3=i3l,i3h
do 10 i2=i2l,i2h
do 10 i1=ill,ilh
a(i1,i2,i3) = b(il,i2-1,i3) + b(il,i2+1,i3)

10 continue

A major aspect of parallel implementation is treatment of coarse grids with no unknowns for
some nodes (such grids are designated “below C-level” in Briggs et al. [4]). FMV-cycles tend to be
relatively more expensive than V-cycles in parallel, because a greater portion of their computations
are carried on below C-level. Both Hempel and Schuller [10] and Briggs et al. [4] use the “sleeping
nodes” approach to C-level, in which nodes which are allocated no unknowns are set idle and then
re-awakened when they rise above C-level again. We have taken two different approaches to C-level
in our current two- and three-dimensional codes.

2-d. Our current two-dimensional code uses a 1-d global approach. When the grid goes below
C-level in direction i, global copies of the current problem are distributed to all nodes in direction
i. The distribution is performed using a 1-d version of a global concatenation operation (GCOL
in [11]). Each node then proceeds to handle the global problem below C-level. No more internode
communication is needed in this direction until computations resume above C-level. The penalty, of
course, is that sub-C computations are duplicated many times, and extra communication is required
for the global broadcasts.

This 1-d global approach does not scale well. As the number of nodes grows large so does the
size of the sub-C level, and hence the parallel CPU time. However, for a moderate number of nodes
good parallel efficiency is achieved, balancing the size of the sub-C level with the communication
performed above the sub-C level. This approach can efficiently accommodate up to the order of vN
nodes, where N = nl-n2 is the number of fine grid points.
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Solution of the tridiagonal 1-d linear systems in our two-dimensional code is consistent with this
approach. We solve the tridiagonal systems with line Gauss-Seidel using a version of two-level cyclic
reduction (Johnsson [12]). The steps in two-level cyclic reduction are:

1. Forward solve local interior unknowns in each subgrid

2. Broadcast and solve a small global system for boundary

unknowns in each subgrid (1-d global concatenate in direction 1)

3. Backsolve local interior unknowns in each subgrid
(Figure 9). The small global system is distributed exactly at C-level. We combine the two-level
cyclic reduction approach with the burn-at-both-ends (BABE) idea, assigning an upper and a lower
node to each subgrid and eliminating unknowns for the two nodes for each subgrid in parallel (Figure
10). ’

9-d. Our current three-dimensional code handles C-level using a 1-d local duplication approach.
As a node goes below C-level, it copies the local problem from a neighboring node. In this way all
nodes stay busy working on systems of small size. This approach is closely related to the supercon-
vergent parallel multigrid approach [9]. However, identical rather than different small systems are
solved, so that the numerical answer is independent of the number of nodes.

As the grid gets coarser, the increment between neighboring nodes grows. Thus on the next-to-
coarsest grid there are nnode/2 copies of small system 1, nnode/2 copies of small system 2, and a
nodal increment to neighbors of nnode/2. This situation is illustrated in Figure 11, where there are
8 nodes and 16 fine grid unknowns, and ninc = nodal increment to neighbors.

Solution of the tridiagonal 1-d linear systems in our three-dimensional code is consistent with
our local duplication approach: We use the one-dimensional semicoarsening multigrid direct solve
outlined in Section 2, which is equivalent to fully recursive cyclic reduction.

The local duplication approach scales fairly well. As the number of nodes grows large, the
amount of work done by each node is proportional to log(N), the number of levels. However, in
practice there is a penalty for using this approach, as well as the “sleeping nodes” approach —
internode communication must continue at all sub-C levels.

Our 2-d hypercube code requires about 56N words of storage, where N is the number of unknowns
on the fine grid local subdomain. Qur 3-d sequential code requires about 136N words of storage. So
far, storage has been the bottleneck in determining the size of problems we can run on hypercubes.

4. Convergence results. 2-d. Our two-dimensional test problems are Neumann model prob-
lems

(18) — (u1)1 — (ratio-uz)2 =1

in the unit square,

: u
(19) = 0
on the boundary, with the matrix made nonsingular by doubling the first main diagonal entry.
The next few Tables depict residual reduction factors for various runs. The initial guess z¢o for
z is taken to be 0. The residual reduction factor is averaged over 5 iterations as

(Il — Azs|l2/|1bl12)*/®.

Factors less than .005 or so are affected by roundoff and may actually represent even faster conver-
gence.

The effect of (17) is seen for ratio = 1, FMV-cycles in Table 1. Based on these resulits, (17) is
used in all other runs reported.

V-cycle, IFPMV-cycle (one FMV-cycle followed by 4 V-cycles) and FMV-cycle residual reduction
factors for different values of ratio are presented in Tables 2, 3, and 4, respectively. Residual
reduction factors are generally largest for ratio near one and smaller for ratio either very large
or very small. Since an FMV-cycle costs roughly twice as much as a V-cycle, the IFMV-cycle
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TABLE 1
Effect of (17).

nl=n2 | zo=0| (17)
10 .054 | .016
20 .070 | .020
40 .14 .024
80 .24 .027

generally seems most efficient, with little more cost than a V-cycle and with residual reduction
factors intermediate between those of V and FMV.

9.d. We use the test set of reservoir simulation problems from Dendy et al. [8]. The problems
are symmetric except for Problem 7, which was symmetrized before solution in (8]. Several of the
problems have large coefficient discontinuities. Average residual reduction factors are given in Table
5 for the results from [8] and for our code running with V-cycles, IFMV-cycles, and FMV-cycles. In
these runs our code used two-dimensional FMV cycles to do the red-black smoothing by planes.

Our results for problems 6 and 7 depend strongly on ordering of axes. Other solvers that do
particularly well on anisotropic problems share this property, e.g., nested factorization (2]. Table
6 presents average residual reduction factors for an FMV-cycle with our code for the various axis
orderings. The results in Table 5 are given for ordering 312 for problem 6.

5. Parallel timing results. 2-d. Table 7 (resp. 8) presents timing results for a 5-iteration
V-cycle (resp. FMV-cycle) of the 2-d code on the iPSC/2 hypercube at Oak Ridge with 64 Intel
scalar 386 nodes. CPU is seconds of dedicated wall clock hypercube CPU time, and efficiency is

CPU,
nnodes . CPUnnodgs ’

The OLM optimizing compiler was used. An S indicates that the run ran out of storage and the
CPU time was estimated based on other runs. The nnodel and nnode2 columns show the numbers
of nodes in directions 1 and 2, respectively. The shown values resulted in the smallest CPU time
for that value of nnodes = nnodel - nnode2. This usually occurred with an approximately square
configuration of nodes. The * values achieve about 50% efficiency. This is obtained with up to about
n1/8 nodes, scaling as expected. The .’s represent runs that were not made because of configuration
or storage constraints.

9-d. Table 9 (resp. 11) presents timing results for a 5-iteration V-cycle (resp. FMV-cycle) of
the 3-d code on the iPSC/2 64-node hypercube at Oak Ridge. Table 10 (resp. 12) presents the
resulting efficiencies. For V-cycles, scaling behavior is more uniform than in the 2-d case, in that
CPU time for a given grid consistently decreases as more nodes are used. Unfortunately, efficiencies
are not as high as in the 2-d case. About 30% efficiency for V-cycles is achieved with v/nl-n2-n3/8
nodes, with relatively higher efficiencies for finer grids. The lower efficiency in 3-d than 2-d may be
partly due to the treatment of coarse grids, and partly due to the larger surface-to-volume ratio for

3-d grids than 2-d grids, with finer grids needed to get the same ratio of interior work to boundary
work.

6. Plans. Plans include trying different coarse grid approaches in 3 dimensions, timing our
- codes on the new generation of Intel RX hypercubes with faster communication networks, and
writing a version of the codes for the Connection Machine.

We are grateful to Joel Dendy at Los Alamos for access to his sequential semicoarsening multigrid
codes and for many helpful conversations; and to Mary Wheeler, Lawrence Cowsar, and Ashok
Chilakapati at Rice University for helpful conversations.



Two-dimensional V-cycle residual reduction factors.

TABLE 2

ratio nl=n2=10 | nl=n2=20 | nl=n2=40 [ n1=n2 =80
1000. .033 .079 097 A1
100. .078 .090 11 12
64. .075 .091 A1 12
32. 072 .090 .10 12
16. .069 .086 .10 A1
8. .061 .076 .090 .10
4, .055 .068 .085 .099
2. .055 .068 .084 .099
1. .054 .067 .083 .098
5 .053 .068 .082 .096
.25 .056 .065 079 .093
125 .050 .061 077 .090
.0625 .035 .065 .073 .087
.03125 .017 .056 071 .085
.015625 .0055 .039 .073 .080
.01 .0036 025 .067 .078
.001 .0052 .0068 .0092 .047

TABLE 3
Two-dimensional IFMV-cycle residual reduction factors.

ratio |nl=n2=10|{nl=n2=20|nl=n2=40| nl=n2=_80
1000. .0078 017 .020 .023
100. .028 .030 .037 .043
64. .029 034 .042 .048
32. .033 041 .048 .055
16. .040 .048 .056 .064
8. .045 .053 .061 .070
4. .046 .053 .061 071
2. 044 .051 .059 .068
1. .042 .050 .057 .066
.5 .042 .048 .056 .064
.25 .040 .046 .054 .062
125 .032 .045 .052 .060
.0625 .020 .044 .049 .058
.03125 .0083 .036 .048 .056
.015625 .0030 .024 .047 .050
.01 .0035 .016 .043 .030
.001 .0051 .0069 .0092 .030




TABLE 4
Two-dimensional FMV-cycle residual reduction factors.

7atio 1ni=n2=10 |nl=n2=20 | nl=n2=40| nl=n2=280
1000. .0055 .0080 .010 .014
100. .0037 .0051 .0068 .0091
64. .0034 .0044 .0059 .0085
32. .0029 .0041 .0057 .0078
16. .0048 .0056 .0065 .0077
8. .0090 .010 .012 .014
4. 014 .016 .019 .021
2. 017 .020 .023 .026
1. 017 .019 .022 .025
) .014 .017 .019 .022
.25 012 .015 .017 .019
125 .011 .013 .015 .017
.0625 .010 .011 .013 .015
.03125 .0072 .011 .013 .015
.015625 .0037 .012 014 .015
.01 .0034 .011 .012 .015
.001 .0052 .0068 .0092 .015
TABLE 5
3-d residual reduction factors.
problem | Dendy V| V | IFMV | FMV
1 27 044 | .027 .012
2 27 .059 | .025 | .0022
3 27 A1 .011 | .0070
4 .25 .058 | .028 | .0083
S5a .09 21 .16 .054
5b .02 27 22 .091
6 .29 24 20 .10
7 27 37 .29 .19
TABLE 6
3-d residual reduction factors.
ordering : | 123 | 132 | 213 | 231 | 312 | 321
problem 6 | 43 | .13 | 43 | .31 | .10 | .31
problem7 | .19 | >1 | >1 | >1 | >1 | .16




TABLE 7
2-d V-cycle hypercube timing results.

nl =n2 | nnodes | nnodel | nnode2 | CPU | efficiency

32 1 1 1 3.8 1.0
2 2 1 2.8 N
4 2 2 2.1 S5*
8 4 2 1.9 3
16 4 4 1.6 1
32 8 4 1.9 1
64 8 8 2.0 .

64 1 1 1 14.9 1.0
2 2 1 9.7 8
4 2 2 5.9 .6
8 4 2 4.8 4*
16 4 4 3.8 2
32 8 4 3.8 1
64 8 8 4.8

128 1 59.6S
2 . . . .
4 2 2 20.7 N
8 4 2 15.0 5*
16 4 4 10.8 3
32 8 4 9.7 2
64 8 8 10.3 1

TABLE 8
2-d FMV-cycle hypercube timing results.
nl = n2 | nnodes | nnodel | nnode2 | CPU | efficiency

32 1 1 1 7.9 1.0
2 2 1 5.4 T
4 2 2 4.7 4*
8 4 2 44 2
16 4 4 4.0 1
32 8 4 4.0
64 8 8 4.2 .

64 1 1 1 30.9 1.0
2 2 1 18.1 9
4 2 2 12.5 .6
8 4 2 9.9 4*
16 8 2 7.7 3
32 8 4 6.8 1
64 16 4 7.3

128 1 123.6S
2 . . . .
4 2 2 41.2 .8
8 4 2 25.9 .6
16 8 2 17.8 4*
32 8 4 14.6 3
64 16 4 13.4 d
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TABLE 9
3-d hypercube V-cycle CPU seconds for given node configuration.

nl=n2 | n3 | 8x8x1 | 4x4x2 | 4x4x1 | 2x2x2 | 2x2x1 | 1x1xl
32 1 4.6 . 4.9 . 5.0 5.3
32 2 15.8 16.6 17.1 18.4 18.9 29.6S
32 4 27.8 28.4 31.3 324 38.7 70.0S
64 1 6.5 . 7.5 . 9.6 21.2S
64 2 22.6 26.5 27.6 . . 118.4S
64 4 41.0 46.3 54.8 . . 280.0S
128 1 9.3 . 13.2 . . 84.8S
TABLE 10
3-d hypercube V-cycle parallel efficiencies.
nl=n2 | n3 | 8x8x1 | 4x4x2 | 4x4xl | 2x2x2 | 2x2x1 | 1x1xl
32 1 <.l . 1 . 3 1.0
32 2 <.l 1 1 2 4
32 4 <.1 1 1 3 R
64 1 A . 2 . 6
64 2 1 1 3
64 4 1 2 3
128 1 1 4
TABLE 11

3-d hypercube FMV-cycle CPU seconds for given node configuration.

nl =n2 | n3 | 8x8x1 | 4x4x2 | 4x4xl | 2x2x2 | 2x2x1 | 1xlxl
32 1 14.3 . 14.2 . 13.6 11.5
32 2 63.7 64.1 66.5 64.0 65.7 74.4S
32 4 | 149.0 | 148.1 | 150.4 | 150.4 | 161.7 | 211.6S
64 1 22.9 . 23.8 . 27.3 46.0S
64 2 102.2 | 110.4 | 1145 . . 297.6S
64 4 | 242.3 | 257.5 | 284.3 . . 846.4S
128 1 35.6 . 45.0 . . 184.0S
TABLE 12
3-d hypercube FMV-cycle parallel efficiencies.
nl=n2 | n3 | 8x8x1 | 4x4x2 | 4xdx1 | 2x2x2 | 2x2x1 | 1xlxl
32 1 <.l . 1 . 2 1.0
32 2 <.l <.l 1 1 3
32 4 <.1 <.l 1 2 3
64 1 <.1 . 1 4
64 2 <.1 1 2
64 4 1 Jd 2
128 1 1 3
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FI1G. 4. 2-d red-black matriz nonzero structure.
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F16. 7. V-cycle.

F1G. 8. FMV-cycle.
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n': nonzero
o : created zero

f: fill-in
N,F : part of small global system for boundary unknowns

F16. 9. Two-level cyclic reduction.

(e \
a n ¢
a n c
a N N
N N b
d n b
d n b
\ d n)
n': nonzero
a : created zero in initial stage for upper node
b : created zero in initial stage for lower node
N : part of small shared system for center unknowns
¢ : created zero in final stage for upper node
d : created zero in final stage for lower node
F1G. 10. Burn-at-both-ends elimination.
nodel | node2 | node3 | noded | node5 | node6 | node7 | node8
ninc=1 ab cd ef gh i kl mn op
coarsen a b c d e f g h
ninc=1
coarsen a b c d
copy a b c d
ninc = 2
coarsen a a b b
copy a a b b
ninc =4
coarsen a a a a
copy a a a a
ninc =8

F1G. 11. Duplication of neighboring systems.
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