)

A

Compile-Time Generation of
Communications for Scientific
Programs

Charles Koelbel

CRPC-TR91089
January, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Rl

\

Compile-Time Generation of Communications for Scientific
Programs

Charles Koelbel*
Center for Research on Parallel Computation
Rice University
Houston, TX 77251-1892

January 18, 1991

Abstract

Programming nonshared memory systems is more difficult than programming shared memory sys-
tems, largely because there is no support for shared data structures. Current programming languages
for distributed memory architectures force the user to decompose all data structures into separate
pieces, with each piece “owned” by one processor, and with all communication explicitly specified
by low-level message-passing primitives. This paper presents a new programming language for these
architectures which provides a global name space and allows direct access to remote parts of data
values. We give a general framework for translating programs written in this environment into
message-passing code suitable for direct execution on distributed memory machines. We then use
this framework to derive an analysis suitable for use in the compiler. Performance results from such
a compiler are shown for the iPSC/860 multiprocessor.

Keywords: Compiling, Distributed Memory Architectures, Shared Memory Model, Parallel Com-

putation, Programming Languages, Compile-time Analysis.

1 Introduction

Distributed memory architectures promise high levels of performance for scientific applications at
modest costs. Unfortunately, they are currently awkward to program. The available programming
languages for such machines reflect the underlying hardware in the same way that assembly languages
reflect the registers and instruction set of a microprocessor. In particular, each process can access
only the local address space of the processor on which it is executing. In contrast, programmers
tend to think of their programs in terms of manipulating large data structures, such as vectors,
arrays, and so on. To implement such a view in a message-passing language, the programmer must
decompose each data structure into a collection of pieces with each piece “owned” by a single process.
All interactions between different parts of the data structure must then be explicitly specified using
the low-level message-passing constructs supplied by the language.

Explicitly decomposing all data structures in this way can be extremely complicated and error
prone. Moreover, program flexibility and portability are reduced by such low-level specifications.
Because the partitioning of the data structures across the processors must be done at the highest
level of the program, and because each operation on these distributed data structure turns into an

*This work was supported by NSF Cooperative Agreement No. CCR-8809615. Additional support was given under
NASA Contract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
Science and Engineering, NASA Langley Research Center.

I

intricate sequence of communication statements, programs become highly inflexible. This makes the
parallel program not only difficult to design and debug, but also “hard wires” all algorithm choices,
inhibiting exploration of alternatives. Similar reasons inhibit porting message-passing programs
to new architectures. Machine-dependent details may change the optimal data distribution, but
implementing this change within the message-passing program will be difficult.

In this paper we present a different paradigm for programming distributed memory architectures.
The goal is to provide a software layer supporting a global name space for the programmer. This
allows specification of the computation via a set of parallel loops exactly as one does on a shared
memory architecture. The compiler analyzes this high-level specification and transforms it into a
system of tasks communicating by messages. We thus acquire the ease of programmability of the
shared memory model and retain the high performance of nonshared memory architectures. This
approach allows the programmer to focus on high-level algorithm design and performance issues
while relegating the minor but complex details of interprocessor communication to the compiler and
run-time environment.

A danger of this approach is that since true shared memory does not exist, one might easily
sacrifice performance. We avoid this by requiring the user to explicitly control data distribution and
load balancing, thus forcing awareness of those issues critical to performance on nonshared memory
architectures. In the future we hope to extend the system so that even these issues can be handled
by the compiler. Another danger is that the compiler may not be able to generate efficient message-
passing code. In this paper we show that this is not the case for an important class of algorithms.
Our compile-time analysis produces code that is virtually identical to that which would be achieved
had the user programmed directly in a message-passing language. Other work [11, 12, 20] has shown
techniques which apply to other important classes of algorithms.

The remainder of this paper is organized as follows. Section 2 presents a general framework
for reasoning about distributed data arrays, and illustrates the model using the Kali’ programming
language. Although we use the Kali syntax here, our research is not specific to Kali; it can be applied
to any imperative language extended with parallel loops and data distribution constructs. Section 3
uses this model to derive an analysis for use by the compiler. Each subsection of Section 3 derives
the analysis needed for one particular pattern of subscripts and illustrates the use of this analysis
on a well-known numerical algorithm. Section 4 shows performance data for those programs and
compares them to hand-written implementations of the same algorithms. Finally, Section 5 compares
our work with other groups, and Section 6 gives our conclusions.

2 A Model for Data Decomposition

This section develops a notation for describing the compilation of parallel loops accessing a shared
name-space into code that can be directly executed on nonshared-memory machines. In Section 2.1,
we give a general description of the source and target code and informally introduce the model.
Sections 2.2 through 2.5 define the components of the model more formally. Finally, Section 2.6
briefly describes implications of this model for code generation.

2.1 The Structure of Generated Code

This section describes in general terms the structure of code generated for a single forall loop. A
forall is essentially a for loop with no inter-iteration data dependences. This lack of dependences
allows iterations of the loop to be executed in any order, including parallel execution.

For concreteness, we will base our discussion on the model program given in Figure 1. The
program copies elements of array A to New_A; specifics of the syntax will be clarified in Sections 2.2
through 2.5. Figure 1 has some significant simplifying assumptions:

1The Kali language is named for a Hindu goddess possessing eight arms. The multiple arms symbolize the paral-
lelism that we hope to exploit.

4

)

processors Procs : array[0.P—1] with P in 1..max_procs;

var A, New_A : array[0..N—1] of real dist by [block] on Procs;
forall i in low..high on New_A[i].loc do
New.Afi] := A[{(i)];

end;

Figure 1: Example forall statement for definition of sets

1. A[f(i)] is the only array reference in the loop that can induce communication. If there are
several references, they can be analyzed separately and the results combined.

2. A[f(i)] is an r-value rather than an l-value, that is, it is read rather than written. If assignments
to nonlocal array elements are allowed, extra communication is needed at the end of the
translated forall to send the nonlocal values to their home processors. The analysis to produce
this communication is analogous to that shown here.

3. A[f(?)] is always accessed in the loop, that is, there are no conditionals to alter control flow
around the reference. Control flow can be handled by using conservative approximations, that
is, by assuming that all references are always made.

In contrast, the specific distributions of data and computation are not simplifying assumptions. The

expressions derived in Sections 2.2 through 2.5 will apply to any distributions.
Each processor must complete three major tasks in order to correctly implement the program of

Figure 1:
e Generate information needed for passing messages and controlling iteration.

¢ Exchange data with other processors so that all processors have the data needed for their
computations.

¢ Execute computations using local data and data from received messages.

A more detailed outline of how these tasks are ordered is given in Figure 2.
The first step of Figure 2 is to generate the information that will be used later. Each processor

needs four pieces of information to complete the above tasks.

The set of array elements that it stores locally.

. The set of forall iterations that it must execute.

The sets of array elements that must be sent and received in messages.

Two subsets of the set of iterations: those which access only local data and those which access
some nonlocal data.

RS

The usefulness of the first two sets is obvious. On processor p they are called local(p) and ezec(p).
The next pair of sets is needed to control the communication with other processors. For every pair
of processors p and ¢ there will be sets send_set(p,q) and recv.set(p,q), which have the obvious
meanings. We will refer to these sets as the communication sets. Finally, the iteration subsets are
used to overlap computation and communication, as explained below. The iterations on processor p
that need no data from other processors are collected in local_iter(p). Iterations on p that access any
data from any other processor make up nonlocal_iter(p) We will refer to these sets as the iteration

sets.

"

Code on processor p:
e Generate communication and iteration sets

— local(p) = Array elements stored on p.

— ezec(p) = Iterations to be performed on p.

— For all ¢ # p, send_set(p,q) = Array elements sent from p to q.
For all q # p, recv_set(p, q) = Array elements received by p from gq.
local_iter(p) = Iterations on p that access only local data.

nonlocal_iter(p) = Iterations on p that access some nonlocal data.

For all ¢ with send_set(p,q) # ¢, send message containing send_set(p, q) to g.

e Execute computations for iterations in local_iter(p), accessing only local arrays.
o For all g with recv_set(p, q) # #, receive message with recv_set(p, q) from g.

Execute computations for iterations in nonlocal_iter(p), accessing local arrays and message
buffers.

Figure 2: Implementing a forall on a nonshared memory machine

The next logical task in implementing a forall is to perform any necessary communication. This
is split into two parts in Figure 2; sending the messages is done first, and receiving messages comes
later. Since A[f(i)] in Figure 1 is an r-value, the only messages needed in the implementation
will be for reading nonlocal data. Since there are no inter-iteration dependences in a forall, the
data for these messages will be available at the beginning of the loop and will not be overwritten
within the loop. Thus, the data can be passed as messages at any time before it is needed. Our
implementation sends the messages as soon as the data is available, that is, as soon as send_set(p, q)
is known. This provides the maximum time for messages to reach their destinations before they are
needed. Similarly, messages can be received at any time before their actual use. Our implementation
performs all receives in a block immediately before the first nonlocal value is needed. This strategy
is called prefetching and is quite effective, but it is not the only possible strategy. We will review
other possibilities in our discussion of related work.

The final logical task in implementing a forall is the actual computation. This task is split into
two parts and interwoven with the communication task. This organization is used to gain efficiency.
If some iterations of the forall on processor p use only data stored on p, then those iterations can
be executed before any incoming messages have been received. This observation can be exploited
to overlap computation and communication by grouping all iterations which use only local data
together. The remaining iterations, which depend on data received in messages, must be executed
after the messages have been received. Combining this overlap strategy with the prefetching strategy
explained above results in the alternation of communication and computation shown in Figure 2.

Note that each processor only needs to generate its own sets. For example, processor 1 needs
no information about local_iter(2) or send_set(3,6). This reduces the amount of information and
analysis required on each processor. It should also be noted that the sets need not be explicitly
generated in all cases; Section 2.6 explores this issue in more depth.

2.2 Data Distribution

The fundamental task of data distribution is to specify which processors in a nonshared memory
machine will store each element of a shared data structure in their private memories. This is done by

1

"

I

)

processors Procs : array[0..P—1] with P in 1 .. max_procs;
var A : array[0..N—1] of real dist by [block] on Procs;

B : array[0..N—1] of real dist by [cyclic] on Procs;
C: array[0..N—1, 0..M—1] of real dist by [block, *] on Procs;

Figure 3: Array declarations in Kali

providing a mapping between the set of processors on a parallel machine and the set of data items to
be stored. This mapping is not necessarily one-to-one. Going from data items to processors, there
will usually be more data items than processors, so each processor must store more than one datum.
In the other direction, it is sometimes advantageous to store several copies of the same data item.
Two particular cases of this are of interest:

1. Scalars and small arrays are usually duplicated across all processors.

2. In practice, it is common to have a small area of “overlap” between the regions stored on
neighboring processors to reduce communication.

A general model of data distribution must allow these types of copying.
We describe a data distribution by giving the set of array elements stored on each processor.
Mathematically, this is a function from processors to sets of array elements which we call the local

function.

Definition 1 Let Procs be the set of processors and Elem the set of elements of an array A. Then
local : Procs — 2E'*™ : local(p) = {a € Elem | a is stored on p} (1)

(Here, 25 is the class of subsets of set S .) Note that using this scheme there is no problem with
multiple copies of array elements; the only consequence is that the local sets of distinct processors
are not disjoint. In this paper, however, we will assume that each array element is stored on exactly
one processor. In the examples that follow, we will represent Procs and Elem by their index sets,
which will be tuples of integers. Also, if there is an ambiguity as to the identity of the array, we will
use the array or distribution name as a subscript.

The Kali syntax for data distribution is shown in Figure 3. The processors declaration declares
and names the set of processors which will execute the program. The declaration shown declares
Procs to be a one-dimensional array of P processors, where P is an integer constant between 1 and
maz_procs dynamically chosen by the run-time system. (The current Kali implementation chooses
the largest feasible P.) This is equivalent to defining the Procs set in the definition of local to be

Proes ={0,1,2,...,P -1}

The definitions of data distributions below will use P as the number of processors and will assume
0-based indexing. It is also possible to declare a processor array with two or more dimensions.
The most common distributions patterns for one-dimensional arrays are block and cyclic. Ar-
ray A in Figure 3 is distributed by block, which assigns a contiguous block of array elements to each
processor. For example, if N = 64 and P = 4, then Procs(0] stores elements 0 through 15, Procs[1]
would store elements 16 to 31, and so on. The general form for local functions for block-distributed

arrays is given below.

Definition 2 Let an array have N elements indezed starting with 0, and the set of processors have
P processors also with 0-based indezing. Then block distribution of the array implies the following

local function.
-1 [¥]+1si<e[F]})

Iocalblock(p) = {i

)

processors Procs : array[0..P—1] with P in 1..max_procs;
var A, B : array[0..N] of real dist by [block] on Procs;
forall i in low..high on Afi].loc do

Afi] := B[(i)};
end;

Figure 4: Forall loop in Kali

Array B in the figure is distributed by cyclic, which assigns every Pth element to the same processor.
For example, if P were 4 then Procs[0] would store elements 0, 4, 8, and so on, while Procs[1] would
store elements 1, 5, 9, etc. The counterpart to Definition 2 for cyclic distributions is

Definition 3 Let an array have N elements indezed starting with 0, and the set of processors have
P processors also with 0-based indezing. Then cyclic distribution of the array implies the following
local function.
Iocalcyc]ic(p) ={i|i=p (mod P)} 3)

Other static distribution patterns are available in Kali, and we are working on extensions to dynamic
distribution patterns. In this paper we will only consider block and cyclic distributions, however.

Distributions of multi-dimensional arrays in Kali is achieved by applying block and cyclic
distributions to each dimension of the array independently. The number of dimensions so distributed
cannot exceed the dimensionality of the processor array. Other dimensions are grouped together on
the same processor and denoted by an asterisk in the dist clause. The declaration of array C in
Figure 3 gives an example of this. It is distributed by blocks of rows; its local function is

locale(p) = {(i,j) |(p- 1)- [%] +1<i<p: [%1 }

If the processor array Procs has two or more dimensions, several dimensions of the data array can
be distributed, leading to patterns such as the familiar two-dimensional blocked distribution.

2.3 Iteration Distribution

The next task in implementing shared name-spaces on non-shared memory machines is to divide
the iterations of a loop among the processors. This can be modeled mathematically by a function
similar to the local function.

Definition 4 Let Procs be the set of processors and Iter the set of iterations of a forall loop. Then
ezec : Procs — 2117 : ezec(p) = {i € Iter | i is ezecuted on p} 4)

Again, we assume that iteration sets are disjoint and that iterations are represented by the value of

the loop index.
A feature of the Kali forall not found in other languages is the explicit specification of the

location of the computation. The on clause of a Kali forall specifies the processor to execute each
iteration of the loop. In effect, this determines the ezec function for that forall. In Figure 4, the loc
expression specifies that iteration i of the forall will be executed on the processor storing element i

of the A array. Thus, in this example,
ezec(p) = locala(p) N {low,low +1,..., high}

More complex on clauses are also possible; in these cases, the ezec function is essentially the inverse
of the expression in the on clause [10].

A

-

oY

2.4 Communication Sets

We now turn our attention to the communication sets. The purpose of this section is to define and
derive expressions for send_set(p, ¢) and recv.set(p, ¢) in terms of the local and ezec functions. This
differs from the last two sections, in which we only defined the functions. This is because the local
and ezec functions were defined by the Kali program text; the communication sets are not so readily
available We will not discuss the practicalities of computing the sets here. Implementation methods
will be discussed in general in Section 2.6 and in detail in Section 3.

The information needed to generate messages in the implementation of a Kali forall can be
encapsulated in the two set-valued functions given in Definition 5.

Definition 5 Let Procs be the set of processors, and Elem the set of elements of array A. Then

send_set : Procs x Procs — 2Elem . send_set(p,q) = {a € Elem |pmust sendatog} (5)
recu_set : Procs X Procs — 2E'em . recv_set(p,q) = {a € Elem | p must receive a from ¢ X6)

Note that send_set(p,q) = recv_set(q,p) for all p and g, reflecting the fact that every message has a

sender and a receiver.
To derive useful formulas for the communication sets, we first make one auxilary definition.

Definition 6 Let Proc and Elem be as they were in Definition 5. Then
ref : Procs — 2E'™ : ref(p) = {e € Elem | p accesses e})

We observe that, under the assumptions of Figure 1, the only way for processor p to access array
element e is for e = A[f(i)] for some i € ezec(p). Thus, we can give a simple formula for ref(p):

ref(p) = {f(}) € Elem|i€ ezec(p)}
= f(ezec(p))

We first derive an expression for recv_set(p,). An array element e must be in recv_set(p, q) if
two conditions are met: processor ¢ must store ¢, and processor p must access €. The first condition
is satisfied by e € local(g). The second condition is equivalent to e € ref(p) Combining the two
conditions stated above, we have that e € recv_set(p,q)ife € local(q) and e € ref(p) or, equivalently,

recv.sct(p, q) = Iocal(q) n ref(p)

We will take this as the general formula for recv.set(p,q). The symmetry of the definitions of
send_set and recv_set then produces the corresponding formula for send_set.

send_set(p, q) = local(p) N ref(q)

The expressions for ref and the communication sets are collected in the following theorem for
reference.

Theorem 1 Let A[f(i)] be an array reference in a forall statement. Then

ref(p) = f(ezec(p)) (8)
recv_set(p,q) = locala(g) N ref(p) (9)
send_set(p,q) = locala(p) N ref(q) (10)

Proof. See above discussion. O
Figure 5 shows a visualization of the communication set analysis for block distributions in two

dimensions. The diagram represents a portion of the array space used in the Kali program above it,
where each circle represents one element of array A. The local(p) sets are squares in the data space.
Because of the form of the on clause, the ezec(p) sets are the same as the local(p) sets. These sets

J)

1y

are represented by the large dashed rectangles in the figure. Only four of these sets are shown; the
other data elements are contained in the local(p) sets for other processors. Subscripting functions
shift and deform these rectangles to produce the ref(p) sets. Here the subscripting function is
f(4,7) = (i — 1,j — 1), which shifts the rectangles up and left without deformation. One such set is
shown as the dotted square in the figure. Intersections between the sets are shown as solid rectangles.
In this case there are three nonempty recv._set(p, q) sets for each processor p. Symmetric arguments
allow one to visualize the send_set(g,p) sets.

2.5 Iteration Sets

The purpose of this section is to derive expressions for the iteration sets in the same way that the
last section derived expressions for the communication sets. Again, we will leave the practicalities

of computing the sets for later sections.
Formally, the iteration sets are defined as two set-valued functions.

Definition 7 Let Procs be the set of processors, and Iter the set of ilerations of a forall. Then
local_iter(p) : Procs — 21" : local_iter(p) = {i € exec(p) | i uses only data on p} (11)
nonlocal_iter(p) : Procs — 21" : nonlocal_iter(p) = {i € ezec(p) | i uses data not on p}(12)

Note that both iteration sets are subsets of ezec(p).
As before, we need an auxillary definition to perform our analysis.

Definition 8 Let Procs and Iter be as they were in Definition 7. Then
deref (p) : Procs — 27" : deref(p) = {i € Iter | i accesses only data on p} (13)

Although their definitions are very similar, it is not the case that deref(p) is the same as local_iter(p).
The difference is that deref(p) may include iterations not executed on processor p. For example, if
all iterations of the forall accessed the same array element e (and no other elements), then dere f(p)
would be all of Iter for the processor storing e. For the program of Figure 1, there is only one way
that any array element e can be accessed: if e = A[f(i)] for some iteration i. Thus, we have

deref(p) = {i€Iter| f(i) € local(p)}
§~H(local(p))

As was the case for recv_set(p, q), two conditions must be satisfied in order for an iteration i to
be in local_iter(p): processor p must execute i, and iteration i must access only data stored on p.
The first condition is satisfied when i € ezec(p) and the second when i € deref (p). Combining the

above two conditions, we have

local_iter(p) = ezec(p) N deref(p)

This is the general formula for local.iter(p) that we sought. Since iterations on processor p which
do not fall in local_iter(p) must fall into nonlocal.iter(p), we can define nonlocal_iter(p) by set

complement:
nonlocal_iter(p) = ezec(p) — local_iter(p)

Rewriting and simplifying, we find

ezec(p) — local_iter(p)

ezec(p) — (ezec(p) N deref(p))

(ezec(p) — ezec(p)) U (ezec(p) — deref(p))
¢ U (ezec(p) — deref(p))

ezec(p) — deref(p)

We take the last form as our definition of nonlocal_iter.
The expressions for deref and the iteration sets are collected below for reference.

nonlocal_iter(p)

8

4+

1

I

var A : array[1..N, 1..N] of real dist by [block, block] on Procs;

forall i in 2..N, j in 2..N on A[ij].loc do
o Ali=1§-1] ...
end;

J
—_—

i
‘ recvset(p, s) = send_set(s,p)

local(s)

| :
]]
oj oo 00 0 0
oo s <— local(r)
o

recvset(p,r)
= send.set(r,p)

ref(p)

local(t) local(p)

recv_set(p,t) = send_set(t,p)

Figure 5: Visualizing communication sets

> |

")

k

L

Theorem 2 Let A[f(i)] be an array reference in a forall statement. Then

deref(p) = f~'(local(p)) (14)
local_iter(p) = ezec(p) N deref(p) (15)
nonlocal_iter(p) = ezec(p) — deref(p) (16)

Proof. See above discussion. O

The iteration sets can be visualized for two-dimensional block distributions in much the same
way as the communication sets, as shown in Figure 6. Here, the small squares represent forall
iterations. One ezec(p) set is shown as a dashed rectangle; because of the on clause in the forall,
this is the same as the local(p) set. The inverses of subscript functions deform this set in much the
same way that subscript functions did in the last section. In this case, f1G,5)=(i+1,7+1) and
the effect of f~! is to shift the local(p) set down and right. This produces dere f(p), shown as a
dotted square. The local_iter(p) and nonlocal_iter(p) sets are shown as the solid square and solid

L-shaped region, respectively.

2.6 Run-time Versus Compile-time Analysis

The major issue in applying the above model is the analysis required to compute the communication
and iteration sets. It is clear that a naive approach to computing these sets at run-time will lead to
unacceptable performance, in terms of both speed and memory usage. This overhead can be reduced
by either doing the analysis at compile-time or by careful optimization of the run-time code.

In some programs the ref(p) and deref(p) sets of a forall loop depend on the run-time values
of the variables involved. In such cases, the sets must be computed at run-time at obvious expense.
We refer to the process of generating code for this task as run-time analysis. A key feature of
run-time analysis is reducing the overhead of building the sets. This can be accomplished by careful
data structure design and reusing the results of the analysis when possible. The reuse amortizes the
cost of the run-time analysis over many repetitions of the forall, lowering the overall cost of the
computation. This strategy is investigated in depth in [12, 10, 15, 20].

In many other programs, the distributions and subscript functions used in a loop are simple
enough that analytic expressions for the communication and iteration sets are available. If such
expressions can be found, the compiler can either compute the sets itself or emit short sequences
of integer instructions to compute them at run time. We refer to such analysis as compile-time
analysis. In the next section we give a form of this analysis applicable to a large number of scientific
computations. As the examples in that section show, programs amenable to this analysis can be
compiled into quite efficient programs.

3 Compile-time Analysis

Many scientific applications have very regular array access patterns. These access patterns may arise
from either the underlying physical domain being studied or the algorithm being used. Examples of

such applications include

1. Dense matrix factorizations, such as Gaussian elimination [9].
2. Relaxation algorithms for PDEs on regular meshes [6].

3. Alternating Direction Implicit (ADI) methods for solving PDE [23].

The distributions and subscripts used in such applications tend to be simple: block or cyclic distri-
bution, and linear subscript functions. With such functions, the communication and iteration sets
can be described by a few scalar parameters (such as low and high bounds on a range). Compile-time
analysis exploits this simple structure to quickly compute those parameters, making set generation
quite efficient.

The general methodology of compile-time analysis is

10

/]

var A : array[1..N, 1..N] of real dist by [block, block] on Procs;

foralliin 1..N,jin 1..N on A[ij].loc do

... Afi-15-1] ...

end;
_j—>
: ezec(p)
i
. Ill O
N
I 1
“HON W i
l : nonlocal_iter(p)
L N Yoeeeenenens
: ' :
H N E N NN
: ' s
“HORE N R
E , local_iter(p)
H NN N N R
_____________________ 4
E N EEEN

deref(p)

Figure 6: Visualizing iteration sets

11

1. Restrict attention to specific forms of subscript (e.g, linear functions of forall indices) and
distributions (e.g, block distribution).

2. Derive theorems giving closed-form expressions for the communication and iteration sets based
on the subscript and distribution forms chosen.

3. Generate code to evaluate the closed-form expressions given by the theorems.
4. Control communication and iteration in the compiled code by using the results of the expres-
sions above.

Steps 1 and 2 are done when the compiler is designed, and steps 3 and 4 are part of the code-
generation strategy. In this paper we examine three common cases to which compile-time analysis
can be applied. Section 3.1 first defines the notation we will use. Section 3.2 then gives the theorems
for compiling constant subscripts with any array distributions, while Sections 3.3 and 3.4 give the
results for linear subscript functions with block or cyclic distributions. The proofs will only be
sketched here; the full proofs can be found in [10]. Each section also shows how its theorems can be
applied to a typical numerical algorithm, and presents performance results for that program.

3.1 Notation
Ranges of integers will appear frequently in Sections 3.3 and 3.4, so we define a notation for them.
Definition 9 A contiguous range of integers is denoted by
[A:B]={i| A<i< B) (17)
Non-contiguous ranges with a constant (integer) step size are denoted by
[A:B:C]l={i|A<i<BAi=A (mod C)} (18)

with C restricted to be positive.

In order to describe certain properties of ranges, it is convenient to define the following:
Definition 10 For integer a and b and positive integer c, let nzt(a,bd, c) be the smallest integer such
that nzt(a,b,c) > a and nzt(a,b,c) =b (mod c).

Defining the modulo operator % to always return the positive remainder of its arguments, we can

compute nzt(a,b,c) by
' nzt(a,b,c)=a+ (b—a)%c

The proof of this property is elementary.
Using nzt(a, b, c) we can derive several properties of ranges

Lemma 1 For anyc; > 0, ¢3 > 0, let ny, ny be integers such that cny +cany = ged(cy,cz) and let

ciny(az — ay)

m = nzt (ma.x(al,ag), + ay, lem(ey, Cg))

ng(Cl, Cg)
Then

[ar: by :ci]Naz:d2:e2] =

{ [m : min(by, b2) : lem(c1,c2)] ifaz=a; (mod ged(cy, c2)) (19)
¢ otherwise

[a1: by]N[az: bs] = [max(ay,a;) : min(bs,b2)] (20)
[ay: b)) —[a2:82] = [a1:min(by,a; — 1)] U [max(a1, b2 +1) : b (21)
[a1 : bl] n [02 1 b : c] = [ma_x(nzt(ahaz,c),az) 1mjn(b1,b2) . c] (22)

12

processors procs : array[1.NP] with NP in 1..max_procs;

const ¢ =10;

var A, B : array[1..N] of real dist by [block] on procs;

for j in 1..10
var k : integer;
do
k:=(0%+J)/2
forall i in low..high on Alfi].loc
var bad : integer;

do
bad := round(sqrt(i));
Afi] :=B[c]; —— OK; compile—time constant
Afi] :=B[j]; —— OK; forall loop invariant treated as constant
Afi] :==B[k]; —— OK; forall loop invariant treated as constant
Afi] == B[j+k }; —— OK; value of j+k is loop invariant
Afi] ;== B[bad J; —— Trouble; not forall loop invariant

end;

end;

Figure 7: Forall-invariant subscripts

The proof relies only on elementary number theory. We omit it, as it is tangential to the main thrust
of this paper.

The precise conditions that we impose on subscripts are worth noting. In the following, some
values used in subscript expressions will be treated as constants. We assume these constants are
integers. This is natural, since the subscript itself must be an integer. It is not necessary that
these values be computable at compile-time, however. Instead, it suffices for these values to be any
expression which is invariant during the forall statement. Such invariant expressions can be detected
by standard compiler techniques. Figure 7 shows several examples of these. The references Bic],
B[j], B[k] and B[j + k] are forall-invariant and can all be handled by the analysis in Section 3.2.
Reference B[bad], however, is outside the scope of our analysis because the value of bad changes

within the same execution of the forall.

3.2 Constant Subscripts

The first case that we attack is constant subscripts. Referring back to Figure 1, this is the case in
which f(i) = ¢, where c is a constant (or a forall invariant, as explained above). No restrictions are
necessary on the distributions of arrays A and New_A or on the form of the on clause. The basic
results for this class of subscripts are given in Theorem 3.

Theorem 3 If the subscripting function in a forall is f(i) = c for some constant c, then

recvset(p,q) = { ic} :fi ;eiﬁ?:fl(q) and exec(p) # ¢ (23)
send_set(p,q) = {ic} ¥ Zii:’::’(?) and ezec(q) # ¢ (24)
local iter(p) = { ;m(P) if & € local(p) -
nonlocal_iter(p) = { fm) :ft ;ﬂf::l(p) (26)

13

Proof.
We first derive expressions for the ref and deref functions.

ref(p) f(ezec(p))

{f(i) | i € ezec(p)}
{c| i€ ezec(p)}

- {19 el 2
¢ ifexec(p)=¢

deref(p) = f~(local(p))
{ Iter if ¢ € local(p)
é if ¢ & local(p)

Direct applications of these expressions to to Equations 9 through 16 produce the desired results.

Il

il

recv_set(p,q) = local(g) Nref(p)
_ { {c} if ezec(p) # ¢ and c € local(g)
- ¢ otherwise

send_set(p,q) = local(p) Nref(q)
{ {c} if ezec(q) # ¢ and c € local(p)

¢ otherwise

local_iter(p) = ezec(p) N deref(p)

_ ezec(p) if ¢ € local(p)
- ¢ otherwise
nonlocal_iter(p) = ezec(p) — deref(p)
_ é if ¢ € local(p)
- ezec(p) otherwise

(m]
The expressions for recv.set(p,q) and send_set(p,q) indicate that one processor is sending a

value to all other processors. This type of broadcast is precisely the behavior that we expect from
a program repeatedly accessing a fixed array element. It is also possible to exploit this observation
by using an efficient broadcast mechanism (such as hardware broadcast or a fan-out tree) instead of
sending individual messages to all processors.

A few other implementation issues are easily resolved. The amount of memory needed to store
the received values can be found directly from the maximum size of recv_set(p, q); a scalar variable
is sufficient for the loop of Figure 1. Separate loops for local and nonlocal iterations can be avoided
by copying Blc] to the temporary location on the sending processor and considering all iterations

on every processor to be nonlocal.
As a realistic example of a program amenable to compile-time analysis, we chose Gaussian

elimination without pivoting. As Figure 8 shows, both forward and back substitution were included
in the program. The Kali compiler produces a C program with explicit message passing primitives
suitable for execution on the iPSC/860. Figure 9 shows a Kali translation of the generated code for
the for jj loop, which is much more readable than the actual C code. The most important features
of that figure are the communication statements and the range of the for i loop. Both are found
directly from Theorem 3. The translation of the rest of Figure 8 is similar, but produces broadcasts
for both the pivot row of a and the pivot element of z. A mature compiler would combine these two
broadcasts; we are currently pursuing such optimizations. We will discuss the performance of this

program in Section 4.

14

processors
Procs : array[1..P] with P in 1..32;

const
N : integer = iargv(1); —— size of matriz (from command line)

var
a : array[1..N, 1..N] of double dist by [cyclic, *] on Procs;

x : array[1..N] of double dist by [cyclic] on Procs;

—— gaussian elimination without pivoting
for k in 1..N-1 do
forall i in k+1 .. N on afi,1].loc do
" forjink+1.. Ndo
afij] = afij] — afkJ] * afi.k] / afk.k];
end;
xfi] == xf] — x[k] * afi,k] / a[k,k];
end;
end;
—— back substitution
for jj in 0..N-1
var j : integer;
do
—— reverse sense of loop, sirice Kali doesn’t have negative steps
=N
x[j] == x[i] / aliki
forall i in 1..j—1 on x[i}.loc do
xfi] := xfi] — =[] * afi.i];
end;
end;

Figure 8: Kali program for Gaussian elimination with forward and back substitution

15

—— Code on processor p

for jj in 0..N-1
var j : integer;
temp.x : double; —— compiler temporary
do
j=N-jj

—— only perform assignment on processor storing z[j]
if (j%P =p) then
x[i] = x[i] / afi.l;

end;

—— communications statements: broadcasting
if (j%P =p) then
temp.x := x[j];
send(tempx, procs[*]);
else
temp.x := recv(procs(*]);
end;
—— computation statements (all iterations nonlocal)
for i in p..j—1 by P do
x[i] := x[i] — tempx * afi,j];
end;
end;

Figure 9: Compiled form of back substitution in Figure 8

3.3 Linear Subscripts with Block Distributions

We next consider programs which subscript block-distributed arrays using linear functions of the
forall index. The particular restrictions that we place on Figure 1 in this case are

1. All arrays in the program have a block distribution and the same size.
2. The computation is performed on the processor storing element 7 of one of the arrays.

3. The subscripting function is f(i) = coi + ¢1, that is, a linear function of the forall index. The
discussion on page 13 described our assumptions about co and c;.

Programs with these features include relaxation and ADI algorithms for solving partial differential
equations on regular grids. In order to generate useful expressions for the communication and
iteration sets, it is necessary to consider two general cases for the value of cg: ¢co > 0 and ¢co < 0.
In this paper we will only present the results for co > 0, which is by far the more common case.
Theorem 4 gives the formulas for this case. The analysis for co < 0 is similar in outline; the reader
is referred to [10] for a full account of this case. Many programs have the additional property that
|co| = 1; therefore, we will derive special forms of all our equations when f(i) = i + ¢ in Theorem 5

The analysis requires expressions for local(p) and ezec(p). The local function for block distri-
butions is given by Equation 2. Because of the simple form of the on clause (New_A[i].loc), the set
ezec(p) is a restriction of local(p). If welet M = [#] be the number of elements on each processor,

then we have
local(p) = {i| Mp<i< Mp+ M -1}

= [Mp:Mp+M-1] 27
ezec(p) = [low : high]Nlocal(p)
= [max(low, Mp) : min(high, Mp+ M — 1)] (28)

16

Because the bounds of ezec(p) will be used so frequently, we designate names for them.
Definition 11 Define bot(p) and top(p) as
bot(p) = max(low, Mp) (29)
top(p) = min(high,Mp+ M —1) (30)
We will also find the following lemma useful

Lemma 2 If all arrays in a forall are distributed by block, the subscripting function is f(i) = coi+c
and co > 0, then

ref(p) = [cobot(p) + c1 : cotop(p) + ¢1 : co (31)
deref(p) = HM"C;’“] : [M""”Aio'l“"‘ J] (32)

Proof. Substitute f(i) = coi + ¢; and Equations 27 and 28 into Equations 8 and 14 by and
simplifying. The floor and ceiling functions come from restricting the expressions to be integers. O
Given this, we can derive the major result of this section.

Theorem 4 Let all arrays in a forall be distributed by block, and let M = [%] be the size of the
block on each processor. Let the subscripting function used in the forall be f(i) = coi + c1 where co
and c; are integer constants, co > 0, and

Ib(p,q) = max(cobot(p)+ ci,nzt(Mg,cy, o))
ub(p,q) = min(cotop(p)+c1, Mg+ M —1)

Then:
If[oF2] +cop— 1< g < |92 + co(p + 1) then
recv_set(p,q) = [Ib(p,) : ub(p, q) : col (33a)
Otheruwise,
recv.set(p,q) = ¢ (33b)

If [M%ﬂ] -1<¢< lﬂ%’%‘l’—lj then

send_set(p,q) = [Ib(q,p) : ub(q,p) : co] (34a)
Otheruwise,
send_set(p,q) = ¢ (34b)
local_iter(p) = [ma.x (boi(p), [M%chl.) : min(iop(p), lMp + Aio— 1- CIJ)] (35)
If ¢y > 0 then
nonlocal_iter(p) = [ma.x (bot(p), Mp + Aio— 1- CIJ + 1) : top(p)] (36a)
Otherwise, if c1 < (MP —1)(1 = co) then
nonlocal_iter(p) = [bot(p) : min (iop(p), [Mpc: cl.l - l)] (36b)

17

Otherwise,

(36¢)

nonlocal_iter(p) = [ma.x (bot(p), lM&b‘{“—_l-ﬂH + 1) : top(p)] v

[bot(p) : min (top(p), ﬁﬁ_o;c-‘.l - 1)]

Note that the conditions on Equations 36a and 36b are both true when co = 1 and ¢; = 0. In this
case,

nonlocal_iter(p) = ¢ (36d)

Proof.
Applying Lemma 2 to Equations 9 and 10 produces

récv.set(p, q) local(g) N ref(p)

send_set(p, q)

[Mq: Mg+ M —1]N[cobot(p) +c1 :
[max(cobot(p) + 1, nzt(Mg, c1,¢0)) :
local(p) N ref(q)

[Mp: Mp+ M —1]N[cobot(q) +c1 :
[max(cobot(g) + €1, nzt(Mp, c1, o)) :

cotop(p) + c1 : co]
min(cotop(p) + ¢1, Mg+ M — 1) : ¢

cotop(q) +c1 : co)
min(cotop(q) + 1, Mp+ M — 1) : co]

These expressions apply to all values of p and g, but are not in the most efficient form for compu-
tation. Many processor pairs will not need to communicate during the computation, and therefore
many of the sets will be empty. We can make computation more efficient by finding conditions

for recv_set(p,q) # ¢ and send_set(p,q) # ¢ and not constructing the sets for other values of p
and q. In outline, this involves fixing p in the above expressions and finding bounds on g based on
comparisons of the upper and lower range bounds. We omit the details of this analysis here; the

conditions in Equations 33 and 34 incorporate the results.
We now turn our attention to the iteration sets. We obtain expressions for these by applying

Lemma 2 to Equations 15 and 16.

ezec(p) N deref(p)
[bot(p) : top(p)] N [[Mpc: cl.l : |.Mp + Aio— 1-a

Mp +M-1—-0c
Co

[ma.x (bot(p), [Ei—o—ﬁl-.l) : min (top(p), l.
ezec(p) — deref(p)

local_iter(p)

)]

nonlocal_iter(p)

- [bot(p) : min(top(p), [Mﬂcoli‘] - 1)] U
[max (bot(p), LMp+ Aio_ 1- clJ + 1) : top(P)]

The equation for local_iter(p) is now in its final form, suitable for use in an implementation. The
formula for nonlocal_iter(p), however, is the union of two disjoint ranges, which is more difficult to
use. This situation is analogous to the situation for the communication sets, in which we have a
correct but computationally expensive formula. As we did then, we now identify simplifying cases;
in particular, we find cases in which one of the unioned ranges is empty. We omit the full analysis
and present the results in Equation 36.

a
We now specialize Theorem 4 to the important case of cg=1.

18

Theorem 5 If all arrays in a forall are distributed by block with M = [%] elements per processor
and the subscripting function is f(i) = i +c, then let

Ib(p,g) = max(boi(p)+c,Mq)
ub(p,q) = min(top(p)+c,Mq+M —1)

Then:
Iff"—j'&l-] +p-1<¢< [‘—;Zl_l +p+1 then
recv_set(p,q) = [1b(p, q) : ub(p, q)] (37a)
Otheruwise,
recv_set(p,q) = ¢ (37b)

Il +p-1<q< |57 +p+ 1 then

send_set(p,q) = [ib(q,p) : ub(q,p)] (38a)
Otherwise,
send_set(p,q) = ¢ (38b)
local_iter(p) = [max(bot(p), Mp — c) : min(top(p), Mp+ M —1— o)l (39)
If¢> 0 then
nonlocal_iter(p) = [max(bot(p), Mp+ M — c) : top(p)] (40a)
Ifc < 0 then
nonlocal_iter(p) = [bot(p) : min(top(p), Mp — c +1)] (40b)
Otheruwise,
nonlocal_iter(p) = ¢ (40c)

Proof. Substitute ¢coc = 1 and ¢; = c in Theorem 4. The bounds on nonlocal_iter(p) can be
improved by using intermediate results from the full derivation rather than bounding the expressions
in Equation 36. O

The formulas of Theorems 4 and 5 can be used directly in an implementation. Ranges of iterations
correspond directly to for loop bounds and steps, while ranges of array subscripts describe sections
of arrays. One issue of some subtlety is allocation of memory to hold off-processor data. The size
of the necessary buffers must be calculated from the cardinality of the sets; given this information,
temporary variables for the buffers can be statically declared or dynamically allocated. (The current
Kali implementation uses dynamic allocation.) To avoid sparse use of storage, addressing into these
buffers should ensure that the range is stored contiguously. This forces the range step size to be
accounted for in the addressing formulas by using division in the address calculation. Some additional
optimizations are possible if [co| = 1. Buffer addressing need not be complex, since the ranges for
the communication sets have unit stride. Also, under the assumptions we have made in this section,
the conditions on ¢ in the communication sets allow at most two sets to be nonempty. These values
of ¢ can be kept explicitly for quick reference.

As a realistic example of a program amenable to compile-time analysis, we chose the cyclic
reduction algorithm for solving a tridiagonal linear system. Figure 10 shows the program used.

19

processors
Procs : array[0..P—1] with P in 1..3%;

const
N : integer = iargv(1); —— size of matriz (from command line)

var
1,d, u, x, y, l.tmp, u_tmp, y_tmp : array [0.N-1] of real
dist by [block] on Procs;
k : integer;

=1
while (k < N) do
—— normalize main diagonal to 1’s
foralli in 0..N—1 on dfi].loc
var m : real;
do
m := 1.0 / dfi];
dfi] := 1.0;
yfi] :== m * y[iJ;
1tmpf(i] := m * 1fi};
u_tmpfi] ;== m * ufi];
y-tmpfi] == y[i];
end;
—— eliminate non—main diagonal entries
foralli in k..N—1 on d[i].loc do
dfi] := d[i] — 1-tmp(i]*utmpfi—k};
y[i) := yfi] — 1-tmp[i]*ytmpfi—k};
1f] := — l-tmp[i] * 1tmpfi—k];
end;
forall i in 1..N—k-1 on dfi].loc do
dfi] := dfi] — u-tmp[i]*l-tmp[i-+k];
y{i] == yf] — u-tmpfi]*ytmpfi+k;
ufi] := — u_tmpfi] * utmpfi+k];

end;
—— update k and go to nexzt iteration
k mult= 2;

end;

—— final solution
forall i in 1..n on x[i].loc do
xfi] := y[i] / df};

end;

Figure 10: Kali program for cyclic reduction with block distributions

20

Despite the name, cyclic reduction can be applied to arrays with any distribution pattern. As with
the Gaussian elimination example, the Kali compiler used the expressions derived in Theorem 5 to
produce a C program with explicit message passing. We show the translation of the second forall
statement as a Kali program in Figure 11. In this case, f(i) = i — k, so ¢ = —k in Theorem 5.
Declarations of variables and arrays are not shown. The translation of the third forall statement
is similar; the first forall does not require communication. Since the subscripts in the expressions
u_tmpli — k), ytmpli — k], and I tmp[i — k] are the same, the compiler can (and does) bundle three
messages into one to reduce communication costs. The complexity of the communications setup is
due to the fact that k, N, and P are not known at compile-time, forcing the use of the general form of
Theorem 5. If those values were true constants, the compiler could do the calculations and substitute
the appropriate values where needed. The generated program also demonstrates the advantage
of compiler generation of communications statements; if only a message-passing environment were
available, then this mass of code would have to be produced by the programmer. It should be obvious
that such code is difficult to write, understand, and debug. Section 4 discusses the performance of

this program.

3.4 Linear Subscripts with Cyclic Distributions

The final case which we analyze is similar to the last section. We again restrict subscripts to linear
functions of the forall index, that is, f(i) = coi + ¢; in Figure 1. We also retain the restriction
on form of the on clause. We now require arrays to be distributed by cyclic rather than block,
however. As in Section 3.3, we derive closed-form expressions for the communication and iteration
sets induced by these conditions. These results appear in Theorem 6. We also derive a simplified
form of the expressions for the case of ¢g = 1 in Theorem 7.

Once again we will need expressions for local(p) and ezec(p). The local function for cyclic
distributions is given by Equation 3, and ezec(p) is again a restriction of local(p). We give those
equations here for convenience.

local(p) = {i|i=p (mod P)} ' (41)
ezec(p) = [low : high] N local(p)
= [nzt(low,p, P) : high : P) (42)

As in the last section, the bounds on ezec(p) will be useful. Thus, we make the following definition.

Definition 12 Define bot(p) and top(p) as

bot(p) = nzt(low,p,P) (43)
top(p) = nst(high— P +1,p,P) (44)
The definition makes top(p) the largest integer less than high which is equivalent to p modulo P.

This is the exact upper bound on the range, rather than an upper bound which is not reached. We
also require the following counterpart to Lemma 2.

Lemma 3 Let the subscripting function be f(i) = coi +c1, and co > 0, let G = gcd(P,co) and let n
and m be such that con + Pm = gcd(P, co). If all arrays in a forall are distributed cyclically, then

ref(p) = [cobot(p)+ c1: cotop(p) +c1 : coP] (45)
¢ ifpEec (modG)
deref(p) = { (i2 202 (mod P/G)} ifpmer (mod G) (46)

Note that top and bot in this lemma are those given by Definition 12, not 11

Proof. The formulas are derived from Equations 8 and 14 by substituting f(3) = coi + c1, Equa-
tions 41, and 42 and simplifying. The conditions on deref (p) come from elementary number theory.

21

—— Code on processor p

M=ceil(N/P);

my.bot := max(k, M*p);

my_top := min(N—1, M*p+M-1);

recv.ql :=p + ceil((1-k) /M) - 1; —— first proc to receive from
recvlowl := max(my_bot—k, M*recvql);

recv.hil := min(my_top—k, M*recvql+M-1);

recvq2 :=p + floor((=1-k) / M) + 1; —— other proc to recv from
recvlow?2 := max(my-bot—k, M*recv_q2);

recv_hi2 := min(my.top—k, M*recv.q2+M-1);

sendql :=p + ceil((k+1) /M) - 1; —— first proc to send to
send Jowl := max(k—k, M*send_q1-k, M*p);

send_hil := min(N—1-k, M*send q1+M-1-k, M*p+M-1);

send_q2 := p + floor((k—=1) /M) + 1; —— other proc to send to
send Jow2 := max(k—k, M*sendq2—k, M*p);

send_hi2 := min(N—1-k, M*send_q2+M—1-k, M*p+M-1);

local low := max(my_bot, M*p+k); —— local iterations
local hi := min(my.top, M*p+M—1+k);
nonlocal low := my.bot; —— nonlocal iterations

nonlocal hi := min(my_top, M*p+k—1);
—— send to other processors
if (legal_proc(sendq1) and send lowl<=send highl) then
send(Procs[send_q1], u-tmp[send lowl..send hil],
y-tmp[send Jow]1..send hil], l_tmp[send Jow1..send hil});
end;
if (legal_proc(send.q2) and send low2<=send_high2 and send_q2<>send.ql) then
send(Procs[send_q2], u_tmp[send Jow2..send hi2],
ytmp([send low?2..send hi2], 1_tmp[send low2..send hi2]);
end;
—— local computations
for i in local Jow..local high do
af] = dfj] 1 tmp[i]*u-tmp(i—k};
y[i] := y{i] — 14mp(i]*y tmp[i—k];
1f] := — 14mp(i] * 1-tmp[i—k];
end;
—— receive messages
if (legal_proc(recvql) and recvlowl<=recv.hil) then
tmp1[recvlowl..recv_hil], tmp2[recvlowl..recv-hil],
tmp3[recvJowl..recv.hil] := recv(Procsfrecvql]);
end;
if (legal_proc(recvq2) and recvlow2<=recv _hi2 and recv.q2<>recv_ql) then
tmp2([recv low2..recv_hi2], tmp2[recv.low2..recv_hi2],
tmp3[recv.Jow2..recv.hi2] := recv(Procs[recvq2]);
end;
—— nonlocal computations
forall i in k..N—1 on dfi].loc do
dfi] := dfi] - 14mp[i]*tmp1fi-k];
y(i] := yfi] — 1-tmpfi]*tmp2[i—k];
1f] := — 1tmpli] * tmp3fi—k};
end;

Figure 11: Compiled form of part of Figure 10

22

?’alues of n and m such that con+Pm = ged(P, co) can be found by the Extended Euclid’s algorithm
1.0
We can now prove Theorem 6.

Theorem 6 If all arrays in a forall are distributed cyclically, the subscripting function is f(i) =
coi + ¢y and co > 0, then let G = ged(P,co) and let n and m be such that con + Pm = ged(P, co).-
Then:

Ifg=cop+c1 (mod P) then

recv.set(p,q) = [cobot(p) + c1 : cotop(p) + ¢y : coP) (47a)

Otherwise, A
. recv_set(p,q) = ¢ (47b)

[fp=ci (mod G) and g€ [(225%)) % (§): P—1:§] then
send_set(p,q) = [cobot(g) + c1 : cotop(q) +¢1 : coP) (48a)

Otherwise,
send_set(p,q) = ¢ (48b)

Ifp=c (mod G) and p= 22z (mod P/G) then
local_iter(p) = ezec(p) (49a)

Otheruwise,
local_iter(p) = ¢ (49b)

IFp#er (modG)orp# 22z2) (mod P/G) then
nonlocal_iter(p) = ezec(p) (50a)

Otheruwise,
nonlocal_iter(p) = ¢ (50b)

Proof.
We obtain the communication set by applying Lemma 3 to Equation 9.

recv.set(p, q) = local(g) N ref(p)
= {ili=q (mod P)}N[cobot(p)+ c1: cotop(p)+c1: coP]

_ [cobot(p) + €1 : cotop(p) + 1 : coP] if cobot(p) +¢1 =g (mod P)
- ¢ otherwise

_ [cobot(p) + c1 : cotop(p) + c1:coP] if cop+e1 =g (mod P)

- ¢ otherwise

(The last step follows because bot(p) = p (mod P).) This form is efficiently computable, since
for each p there will be exactly one ¢ with a nonempty recv_set(p, q), easily found by taking the
remainder of cop + ¢1. The corresponding expression for send_set(p, 9),

send.set(p,q) =

[cobot(g) + 1 : cotop(q) +¢1 : coP] ifcog+er=p (mod P)
¢ otherwise

23

is not acceptable, because there may be a number of nonempty sets which cannot be quickly com-
puted from this form. We therefore characterize the solutions to cog + ¢; =p (mod P). This can
be done by number theory and is similar to the derivation of Equation 46; we omit the details of

the analysis.
To derive the iteration sets, we apply Equation 46 to Equations 15 and 16.

ezec(p) N deref(p)
[bot(p) : top(p) : P] N deref(p)

Again, conditions allowing the intersection to be nonempty can be derived from number theory.
Once this is done, the expression for nonlocal_iter(p) can be derived immediately using the fact that
the iteration sets are complements. O

We now specialize Theorem 6 to the case of co = 1.

local_iter(p)

Theorem 7 If all arrays in a forall are distributed cyclically and the subscripting function is f(i) =
i+c, then:
Ifq=(p+¢c)% P then

recvset(p,q) = [bot(p) + c : top(p) + c: P] (51a)
Otheruwise,
recv_set(p,q) = ¢ (51b)
Ifg=(—c)% P then
send_set(p,q) = [bot(q) + ¢ : top(q) +c : coP) (52a)
Otherwise,
send_set(p,q) = ¢ (52b)
Ifc% P =0 then
local_iter(p) = ezec(p) (53a)
Otherwise,
local_iter(p) = ¢ (53b)
Ifc% P #0 then
nonlocal_iter(p) = ezec(p) (54a)
Otherwise,
nonlocal_iter(p) = ¢ (54b)

Proof. By simple substitution. O

The remarks at the end of Section 3.3 regarding the use of theorems in implementation apply
here as well. Allocation and indexing of temporary arrays must take into account the fact that only
every Pth element will be accessed. This is handled by the mechanisms for allocating and addressing
the local sections of cyclic-distributed arrays, namely using a division in the addressing formulas.
(When the number of processors is a power of two, as it always is on hypercube machines, the division
can be replaced with a shift.) In addition, we can use the technique of assuming all iterations are
nonlocal to reduce the number of generated loops, as was done for the constant-subscript case.

As a realistic example of a program amenable to this analysis, we chose the cyclic reduction
algorithm applied to arrays distributed by cyclic. The input program is identical to Figure 10

24

—— Code on processor p

my.bot := nxt(k, p, P);
my_top := nxt(N-P, p, P);

recv.q := (p—k) % P; —— processor to receive from
recv]ow := my.bot—k;
recv.hi := my.top—k;

send_q := (p+k) % P; —— processor to send to
send Jow := nxt(k, sendq, P) — k;
send.hi := nxt(N—P,sendq, P) — k;

—— send messages
if (sendq <> p) then
send(Procs[send.q], u-tmp([send Jow..sendhi],
y-tmp[send Jow..send hi], .tmp[send Jow..send hi]);

end;
—— no local computations

—— receive messages

if (recvg <> p) then
tmp1[recv_low..recv_hi], tmp2([recvlow..recv.hi],

tmp3[recvlow..recv_hi] := recv(Procs[recv.q]);

else
tmpl[recvlow..recv.hi by P] := u.tmp[recvlow..recv.hi by PJ;
tmp2[recvlow..recv_hi by P] := y_tmp[recvlow..recv.hi by PJ;
tmp3[recv_low..recv.hi by P] := l.tmp[recv.low..recv.hi by PJ;

end;

—— nonlocal computations

for i in my_bot..my_top by P do
dfi] := dfi] — 14mp[i]*tmp1i—k};
y[i) := yfi] — 1-tmp[i]*tmp2[i—k];
1fi] := — 1tmp[i] * tmp3fi—k];

end;

Figure 12: Compiled form of Figure 10 with cyclic distribution

25

except for the distributions of the arrays. The compiler applied Theorem 7 to compile this program.
The code generated for the second for i loop is shown in Figure 12. The process of compilation
is similar to that for Figure 11. Because the underlying formulas differ, however, Figure 12 is
very different from Figure 11. These changes illustrate another advantage of the Kali model of
compilation: flexibility. In Kali, experimenting with different data distributions is simply a matter
of changing a single declaration, while in a conventional message-passing system the entire structure
of the program must be changed. When combined with systems for predicting performance such as
[3], this offers a valuable tool for creating efficient nonshared-memory programs.

4 Performance

To evaluate the effectiveness of the Kali compiler, we compiled and ran the programs described in
Sections 3.2, 3.3, and 3.4. All programs were run on an iPSC/860 with 8 Mbyte of memory per node.
No other programs were executed for the duration of our tests. To ensure timing accuracy, an outer
loop was added so that execution times were much larger than the granularity of the system clock.
To ensure correctness, the linear systems to be solved were constructed with a known result vector,
and the computed solution was checked against these values. No significant variation in timings or
numerical errors occurred. The C programs output by the Kali compiler were compiled with the
GreenHills C compiler with optimization turned on.

As a basis for comparison, we also implemented the same algorithms in C. The C versions were
optimized as much as possible, subject to the constraint that they be written in a “similar” style
to the Kali compiler output. Optimizations that were performed included expression simplification
and combining messages to the same processor. We did not apply low-level transformations such as
induction variable elimination; both the Kali and C versions would be amenable to these optimiza-
tions. Similarly, we did not change the algorithm or data distributions for the hand-written versions,
although this might have improved performance. The hand-written C programs were compiled with
the same options as the Kali compiler output.

Figures 13 and 14 show performance results for the Gaussian elimination programs. Figure 13
shows the execution times of both the Kali and C programs for various matrix and machine sizes.
The solid lines with symbols are the times for compiled Kali code; the dotted lines immediately below
them are the times for hand-written C code. The top performance curve is cut off because memory
constraints prevented running the 1024 x 1024 problem on one or two processors. The Kali program
is from 11% to 58% slower than the C version. The larger discrepancies occur when the amount
of data per node is small. In these cases, communication dominates the total time. This gives a
substantial advantage to the hand-written version, which combines the broadcasts of the pivot row
and element of the solution vector. Figure 14 shows the parallel speedups for the Kali program for
all matrix sizes that fit on a single node. Communications overhead and load balancing prevent good
performance for small matrices spread over many processors, but performance for larger problems is
acceptable. These performance limitations are inherent in the Gaussian elimination algorithm; they
also appear in the C language version of the program.

Figures 15 and 16 show performance results for the program of Figure 10. In this case, we
did not hand-write a C version because the performance of the algorithm with cyclic distribution
is better. Analysis of the generated code, however, suggests that the hand-optimized version of the
block-distributed algorithm would show less improvement than the cyclic version. This statement
is based on the observation that there is less to improve in the block version. For example, the cyclic
version used a more complex subscripting formula which the hand-written version eliminated, but the
block subscripting formula has no exploitable complexity. The times shown here are unimpressive
because the communication overhead is very high in comparison to the computation, as shown for
N = 500 in Figure 16. Although the computation time does decrease approximately linearly, the
communication time does not, preventing perfect speedup. Again, these effects were due to the
nature of the algorithm, not to the compilation strategy. These effects would be less apparent for
larger problems, but we were unable to test those cases due to an apparent bug in the C compiler.

26

100 —
+—+ N =1024
10 —
o——a N =512
. x——x N =256
Ti
irme (s) o——o N =128
0.1 — r—o N =64
s——a N =232
0.01 —
| | | | | |
1 2 4 8 16 32
Processors
Figure 13: Execution times for Gaussian elimination
32
o——ma N =512
16 —
—-x N =256
8 -
Speedup o—o N=128
4 -
~———e N =64
9
&=—a N =32
14
| 1 l I | |
1 2 4 8 16 32
Processors

Figure 14: Parallel speedups for Gaussian elimination

27

0.02 x———x N =500
0.01 - — o N =400
0.005 — ‘
o—90 N =

Time (s) 300
0.002 Kw\ —a N =200
0.001 — a—a N =100

0.0005 —— T I l I I

1 2 4 8 16 32

Processors

Figure 15: Execution times for cyclic reduction with block distribution

0.04 —
Commicntion
0.03 P
Time (s)
ooz | | PP e
RSN I I R A - A A R . Computation
0 I I T I I I
1 2 4 8 16 32

Processors

Figure 16: Computation and communication times for cyclic reduction with block distribution
(N = 500)

28

Figures 17 and 18 show performance results for the cyclic-distributed version of cyclic reduction.
As in Figure 13, the solid lines represent times for the Kali program and the dotted lines represent
the C program. The Kali program ranged from 28% slower to 22% faster than the hand-coded
program. We cannot explain all the cases in which the hand-coded program was slower, but the
differences are repeatable and at least 10 times larger than the variance of the data. The fact that
many of them occur for small per-node array sizes offers a clue. The Kali compiler implemented the
array copies of Figure 12 in the natural way, by copying all elements. The hand-crafted program,
on the other hand, merely set a pointer to the start of the local array section. For small arrays,
this is a very minor savings, and could conceivably create second-order effects that mask it entirely.
Parallel speedups are better than for the block-distributed program, primarily because the later
stages of the reduction do not require communication, while all stages of the block version do.
Figure 18 is the counterpart of Figure 16 for the cyclic variant. The communication cost shown for
one processor corresponds to the cost of the array copies, since these would not be present in an
optimized sequential implementation. Again, we see that computation scales nearly linearly, while
the communication does not.

5 Related Work

There is a great deal of current research aimed at providing high-level languages for nonshared
memory machines. In this section we will mention only the most closely related work.

Relatively few other groups have considered explicit models of data distribution for the purposes
of compilation. Those who have [4, 7, 14, 18] have taken a different path toward formalizing the
distribution. Generally, these approaches define a function

proc : Elem — Procs : proc(a) = p, where p is the processor storing a

If every element is stored on exactly one processor, then the two approaches are equivalent. (In this
case, local is simply proc=!.) If an element can be stored on more than one processor, however, the
two methods are not equivalent. It is not obvious how such a distribution scheme could be modeled
using a single-valued proc function. Our model therefore appears more general than others.

There are many other groups that translate shared-memory code with partitioning annotations
into message-passing programs. Recent research from these groups includes [2, 4, 5, 8, 14, 16, 17, 19,
22, 24]. All of these groups produce highly efficient code for the problems to which our compile-time
analysis applies. Some of their methods, particularly those in (2, 4, 14, 17, 22, 24], appear to be more
generally applicable than ours. Their means of code generation differ significantly from ours and from
each other. In general, others’ methods work bottom-up, that is, from the innermost levels of loop
nests outwards. This is particularly true for [2, 4, 8, 24], which insert communication primitives in
the innermost loops and use aggressive program transformations to move those statements to outer
loop levels. The bottom-up approach has the advantage that it can be applied to any loops, while
our approach is specific to bf forall statements. For forall loops, however, our methods appear to
require less compiler overhead. A hybrid approach of transforming general loops into forall loops
and then applying the techniques of this paper could combine these advantages. We are researching
this possibility.

Three of the above groups are particularly advanced. Gerndt [8] introduces the concept of
“overlap” between the sections of arrays stored on different processors and shows how it can be
automatically computed. This has advantages for accessing nonlocal array elements once they have
been received. Such overlap areas seem to fit nicely into the formalism of Section 2, and we are
investigating incorporating them into our research. Tseng [22] has developed the AL language and
its compiler targeted to the WARP systolic array. An important advance over our work is that AL
automatically generates the distribution for an array, including overlap information, given only the
programmer’s specification of which dimension is to be distributed. This is a significant improvement
over the block and cyclic declarations used in Kali, as determining a good distribution for an array
is a significant intellectual challenge. A large portion of Chen and Li’s work [13, 14] is also concerned

29

%———x N =500

———— N =400

0.0064 —
Time (s) ———o N =300
0.0016 - o——a N =200
s N =100
0.0004
1 2 4 8 16 32
Processors

Figure 17: Execution times of cyclic reduction with cyclic distribution

0.08 T

- ' Communication:
0.06 — U :

Time©® || | ..
0.04 —
..... Computation
0.02 - .
M :
0 T T T T | T
1 2 4 8 16 32

Processors

Figure 18: Computation and communication times for cyclic reduction with cyclic distribution
(N = 500)

30

with automatically distributing data among processors. Their method, however, requires classifying
the dimensions of an array as “temporal” and “spatial.” These distinctions are clear in the single-
assignment language Crystal used by Chen and Li, but it is less obvious how they can be applied to
imperative languages.

Of the works mentioned above, only [5, 14, 17] explicitly consider run-time message generation
like that mentioned in Section 2.6. Another group who has been very active in implementing this
class of program is Saltz and his coworkers (15, 20, 21]. While such methods are beyond the scope
of this paper, they are needed for generality in compilers for languages like Kali.

6 Conclusions

Current programming environments for distributed memory architectures provide little support for
mapping applications to the machine. In particular, the lack of a global name space implies that
the algorithms have to be specified at a relatively low level. This greatly increases the complexity
of programs, and also hard wires the algorithm choices, inhibiting experimentation with alternative
approaches.

In this paper, we described an environment which allows the user to specify algorithms at a
higher level. By providing a global name space, our system allows the user to specify data parallel
algorithms in a more natural manner. The user needs to make only minimal additions to a high
level “shared memory” style specification of the algorithm for execution in our system; the low level
details of message-passing, local array indexing, and so forth are left to the compiler. Our system
performs these transformations automatically, producing relatively efficient executable programs.

The fundamental problem in mapping a global name space onto a distributed memory machine
is generation of the messages necessary for communication of nonlocal values. In this paper, we
presented a framework which can systematically and automatically generate these messages, using
either compile time or run time analysis of communication patterns. In this paper we concentrated
on the case of compile-time analysis. This method produces very efficient code in the cases where
it can be applied. We have demonstrated that the compiler can produce code similar to that which
a human programmer might produce, and validated its performance against a simple performance

model.

References

[1] Alfred V. Ahb, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] F. André, J -L. Pazat, and H. Thomas. PANDORE: A system to manage data distribution. In
International Conference on Supercomputing, pages 380-388, June 1990.

[3] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer. An interactive envi-
ronment for partitioning and distribution. In 5th Distributed Memory Computing Conference,
pages 11601170, Charleston, SC, April 8-12 1990.

[4] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors.
Journal of Supercomputing, 2:151-169, 1988.

[5] A.Chuengand A. P. Reeves. The Paragon multicomputer environment: A first implementation.
Technical Report EE-CEG-89-9, Cornell University Computer Engineering Group, Ithaca, NY,

July 1989.
(6] G. Dahlquist and A. Bjorck. Numerical Methods. Prentice-Hall, Eaglewood Clifis, NJ, 1974.

31

[7] K. Gallivan, W. Jalby, and D. Gannon. On the problem of optimizing data transfers for complex
memory systems. In Conference Proceedings of the International Conference on Supercomputing,
pages 238-253, St. Malo, France, July 1988. ACM Press.

[8] H.M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing Systems. PhD
thesis, University of Bonn, December 1989.

[9] G. H. Golub and C. F. Van Loan. Mairiz Computations. Johns Hopkins University Press,
Baltimore, MD, second edition, 1989.

[10] C. Koelbel. Compiling Programs for Nonshared Memory Machines. PhD thesis, Purdue Uni-
versity, West Lafayette, IN, August 1990.

[11] C. Koelbel, P. Mehrotra, J. Saltz, and S. Berryman. Parallel loops on distributed machines. In
Proceedings of the 5th Distributed Memory Computing Conference, Charleston, SC, April 9-12
1990.

[12] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on dis-
tributed memory machines. In Proceedings of the 2nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 177-186, Seattle, WA, March 14-16 1990.

[13] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between
distributed arrays. Technical Report YALEU/DCS/TR-725, Yale University, New Haven, CT,

November 1989.

[14] J. Li and M. Chen. Synthesis of explicit communication from shared-memory program refer-
ences. Technical Report YALEU/DCS/TR-755, Yale University, New Haven, CT, May 1990.

[15] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and K. Crowley. Principles of runtime
support for parallel processors. In Proceedings of the 1988 ACM International Conference on

Supercomputing, pages 140-152, St. Malo, France, 1988.

[16] M. J. Quinn and P. J. Hatcher. Compiling SIMD programs for MIMD architectures. In Pro-
ceedings of the 1990 IEEE International Conference on Computer Language, pages 291-296,

March 1990.

[17] A. Rogers. Compiling for Locality of Reference. PhD thesis, Cornell University, Ithaca, NY,
August 1990.

[18] A. Rogers and K. Pingali. Process decomposition through locality of reference. In Proceedings
of the SIGPLAN 89 Conference on Programming Language Design and Implementation, pages
69-80, June 21-23 1989.

[19] M. Rosing, R. W. Schnabel, and R. P. Weaver. Expressing complex parallel algorithms in DINO.
In Proceedings of the 4th Conference on Hypercubes, Concurrent Computers, and Applications,
pages 553-560, 1989.

[20] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling and execution of
loops on message passing machines. Journal of Parallel and Distributed Computing, 8:303-312,
1990.

[21] Joel Saltz, Harry Berryman, and Janet Wu. Multiprocessors and runtime compilation. ICASE
report 90-59, Institute for Computer Applications in Science and Engineering, Hampton, VA,
1990.

[22] P.S. Tseng. A Parallelizing Compiler for Distributed Memory Parallel Computers. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, May 1989.

32

(23] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York, NY,
1971.

[24] H. Zima, H. Bast, and M. Gerndt. Parallel Computing, volume 6, chapter Superb: A Tool for
Semi-Automatic MIMD/SIMD Parallelization, pages 1-18. North-Holland, Amsterdam, 1988.

33

