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AN ERROR ANALYSIS FOR
GALERKIN APPROXIMATIONS TO AN EQUATION
OF MIXED ELLIPTIC-PARABOLIC TYPE

TODD ARBOGAST

Abstract. Error estimates are derived for both continuous and discrete
time Galerkin approximations to a highly nonlinear flow equation which
is formally parabolic. It has a nonlinear, monotone accumulation term
with a Holder continuous derivative that is allowed to vanish, in which
case the equation becomes elliptic in nature. This equation includes
Richard’s equation, which models unsaturated and saturated groundwa-
ter flow. For smooth solutions, upper bounds are obtained for L°°(L?)
and L2(H!)-norms of the error as well as for a certain nonlinear form
that gives a measure of the error’s size. The rates of convergence are
determined by the nature of the accumulation term’s nonlinearity; in
the strictly parabolic case where the accumulation term is C? and has
its first derivative positively bounded from above and below, these rates
are of optimal order. The rate of convergence of the nonlinear form is
generally of optimal order.

1. Introduction. In this paper we present an analysis of the error in
Galerkin approximations to an equation of the following form:

(1.1) 8:6(z,u) — V- [a(z,6(z,u))k(z)Vu + b(z, t,6(z,u))]
+ c(z,0(z,u))u
= f(z,t,0(z,u)) in 2 x J,
(1.2a) u = up(z,t) on I'p x J,
(1.2b) — [a(z,8(z,u))k(z)Vu + b(z,t,6(z,u))] - v — Az, t)u
= g(z,1) on I'n X J,
(1.3) u=u"z) onfx0,

where J = (0,7T] and function evaluations are nonlinear in é(u) only.
The function 6(u) is assumed to be monotone nondecreasing and uni-
formly C'” in u € IR; that is, 3,6(u) is bounded from above and Holder
continuous, but 8, 8(u) is not necessarily positively bounded from below.
As one consequence, the problem is parabolic in nature only in regions
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where the solution u gives rise to a nonconstant 6(u); otherwise, it is
elliptic in nature, with some free boundary separating the two regions.

Equation (1.1)-(1.3) arises, for example, with ¢() = 0 in the model-
ing of groundwater flow (and it is often called Richard’s equation) [2],
[7]. The saturated flow of incompressible groundwater is modeled when
the moisture content f(u) is at its maximum (saturated) value, and the
flow is of elliptic type. The unsaturated flow is given by the parabolic
equation when 6(u) is an increasing function of u; 6(u) represents the
accumulation of water due to highly nonlinear capillary effects. The ad-
vantage of the form (1.1)—(1.3) is that the solution can be approximated
without a direct approximation of the free boundary, which is poorly
understood (see, e.g., [1], [6], [8], [10], and [11]). This fact has been
exploited computationally by, for example, Celia et al. [3] and Knab-
ner [12].

Wheeler and Dupont [17, Section 3.4] gave a continuous time error
analysis of Galerkin approximations to a version of this equation when
the problem is smooth and strictly parabolic, i.e., when 8,6(u) is Lips-
chitz and positively bounded from below. Rachford [13] considered the
problem in nonconservative form (i.e., with 8,6(u) written as 0, 6(u)0;u).
He gave a discrete time error analysis of a Crank-Nicolson type scheme,
again when the problem is smooth and strictly parabolic. These earlier
results do not in any direct way extend to the present problem.

With U representing the approximate continuous time solution, we
will obtain upper bounds on two norms and a nonlinear form,

16(w) — 6(U)||Lee (s;L2(2))s 1w — Ull2(ssmr (),
T
and / (8(u) — 8(U), u - U) dt,
0

when u is sufficiently smooth (W*? is the standard Sobolev space of
k-differentiable functions in L?, and H*¥ = W*2). For the type of accu-
mulation 8 that we consider, note that for some ¢,Q > 0 and any v and
w’

gl6(v) — 6(w)] < [(8(v) — 8(w))(v — w)]'/? < Qv — w,

so our nonlinear form indeed measures in some sense how much w de-
viates from v. As we will see (Theorem 1, Section 5), the rate of con-
vergence of U to u in either of the norms depends on the rate at which
the graph of § may become flat and on the Holder constant of 0,6; that
is, upon B and 7 defined in (A16)-(A17) below. The nonlinear form
estimate is better behaved, converging to zero at the optimal rate (up
to a possible restriction on the spatial dimension). Somewhat better
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results are obtained in the special cases of strictly parabolic flow and of
monotone flow (Theorems 2-3, Section 5). The discrete time case has
analogous results (Theorems 4-6, Section 6).

2. The Galerkin procedures. Before we present the general Galerkin
approximation procedures considered in this paper, we define a weak
form of the problem. Let (-, -) denote the L?(2) inner product, (-, -)
denote the L?(I'y) inner product, and

V={ve H(N):v|r, =0}.
Then u € V + up satisfies

(2.1) (8:6(u),v) + (a(6(u))kVu + b(8(u)), Vv)
+ (Au,v) + (c(G(u))u, v)
= (f(8(u)),v) — (g,v) forallveV.

For h > 0, let {Vn}r be a family of finite dimensional subspaces of
V. (For simplicity we do not consider nonconforming Galerkin meth-
ods in this paper.) Now the continuous time Galerkin procedure is the
following: Find U € Vj, + up such that

(2.2) (8:6(0),v) + (a(@(UDVU +b(E(V)), Vv)
| + (AU, v) + (c(8(U))U,v)
= (f(e(U))9v) - (gav) for all v € Vh')

where U(z,0) is defined to be some reasonable approximation to u%(z)
in Vi 4+ up(-,0) (we tacitly assume that u®(z) = up(z,0) for z € ID).
For discrete time, let 0 =t9 < t; < :--- <ty =T be a given partition
of J, define At" = t, — t,—; and At = max, At", let v™ denote v(t,)
for any function v of time, and denote the backward difference operator

by

o™ — vn—l

At"
The discrete time Galerkin procedure is as follows: For n = 1,2,..., N,
find U™ € V), + u such that

o™ =

23)  (86(U)",v) + (a(8(U))kVU™ + b™(8(U™)), V)
+ (A"U™,v) + (c(8(U™))U™,v)
= (fOU™),v) — (g"v)  forall v € Vi,
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and as above U? is some reasonable approximation to u° in Vi + u$,.
D

‘REMARK 1: The existence and uniqueness of our approximate solutions
can be established in a manner analogous to that for the true solution
[10], [1]. (Uniqueness can also be shown by the techniques of this pa-
per.) The fully discrete scheme (2.3) is computable if, for example, V},
is some standard finite element space and an iterative procedure such as
Newton’s method is used to solve approximately the nonlinear equations.

We close this section by making the following assumptions explicit.
Only (A16) appears to be novel. Throughout the paper let ¢, ¢, and Q
denote generic positive constants that are independent of z, t, h, n, and
the At", where € can be taken to be as small as needed.

(A1) 2 c R? is a connected, bounded domain with a sufficiently reg-
ular boundary I' (e.g., I' € C*?!). Also, I' is partitioned into two
subdomains, I'p and I'n, with I'p having positive measure.

(A2) 6(z,u) is monotone nondecreasing in u € IR for each fixed z € 2,
uniformly Lipschitz in both z and u, and uniformly bounded from
above and below.

(A3) k(z) is uniformly Lipschitz in z € 2, and k is a uniformly
positive-definite symmetric tensor.

(A4) a(z,0) is uniformly positive, uniformly bounded, and uniformly
Lipschitz in both z and §; moreover, |V,8sa| and |8%a| are uni-
formly bounded.

(A5) The vector b(z,t,0) is continuous in t and uniformly Lipschitz in
6, and sup, |b(8)| € C°(J; L3(R2)).

(A6) c(z,6) > 0 is uniformly bounded and uniformly Lipschitz in 6.

(A7) f(z,t,0) is continuous in ¢ and uniformly Lipschitz in 6, and is
such that sup, |f(8)| € C°(J; L*(£2)).

(A8) up € CO(J; WH=(2)) n WH1(J; L}(R2)).

(A9) g € C°(J; H™1/2(I)).

(A10) A € Whoo(J; W1*°(I'y)) and A > 0.
(A11) u° € L?3(R2).
(A12) For some r > 2,

inf |lv—x|l1 < Q|lv|lkp*™? for1<k <,
XEVn

where || - ||+ denotes the H¥(2)-norm.
(A13) The following inverse inequality holds for v € Vs:

Ivllzeay < Qllvlloh™4/%.
(A14) u—up € HI(J,H'(Q)) and u € W1’°°(J; Wl,oo(n)).

4






(A15) [lu® = Ul < QA"
(A16) On its domain of definition, uniformly in z € 2, (8,6) 067! is
Hélder continuous of order 3,0 < # < 1; that is, for any v, w € IR,
10.6(v) — 8.8(w)| < QIB(v) — B(w)”.

(A17) 0,0 is uniformly Holder continuous of order v, 0 < v < 1: For
any v,w € IR,

8.6(v) — Bu8(w)| < Qv — w|".

(A18) gAt" < A" < QAt" for all n and 876(u) € L*(J; L2(R2)).
REMARK 2: Assumptions (A12)-(A13) hold for standard finite element
spaces defined over quasi-uniform meshes [4]. Moreover, (A1) and (A12)
imply that

inf |lv—xllo € Q|lv|lxh*  for0< k<
XEVh

Assumption (A15) can be satisfied easily if u® € H"(£2); for example,
define U° to be an elliptic (see (4.1) below) or L? projection of u°.

REMARK 3: Clearly (A2) and (A16) imply (A17) for some v > f, and
if 0,6 is positively bounded from below, then § = 4. As an example,
suppose that 8(u) o« 1 — |min{0,u}|* for some a € (1,00). Then (A16)
holds with § = (a — 1)/ and (A17) holds with ¥ = min(a —1,1). Both
B and v measure the smoothness of the graph of 6, but # also measures
in some sense the manner in which the graph of § becomes constant
wherever it does so.

3. Some stability results. In this section, we consider the question
of overall stability of the two Galerkin procedures. We begin with an
observation, easily verified as an exercise in calculus.

PROPOSITION 1. Assume (A2). Then for any v and w in IR,

(31) (2sup 8.8]) ™ (B(v) - 6())’

< [ (00) ~ ) do < (00) ~ 8() (0 - w).

w
LEMMA 1. Assume (A1l)-(All), (A15). IfU is defined by (2.2), then
(3.2) WUl L2511 (2))
< Q{ H Sl;p |f(9)|“L2(J;L2(_Q)) + ||g”L2(J;H-1/2(I"N))

+ ||lup||L2(s;H51(2)) + lupllwri (gL (2y)
+|| 5y B L2120y + 1U°Nzs(an }-
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PROOF: In (2.2), let v = U —up € V4. The use of Poincaré’s inequality
and some manipulation result in

(3.3) (8:8(U),U —up) + q||U||}
< @{llsup b()l; + | sup 1FO)I; + lglltr-ss2ryy + lunl?),

where ¢ and @ depend upon the bounds for ak, )\, and c. Because
(3.4) 0.8(U)U —up)
U
= 3:{ / . (6(U) — 6(p)) du + 6(U)U° — uD)} + 6(U)0sup,
U
integration in time followed by an application of Proposition 1 gives the
lemma. J

LEMMA 2. Assume (A1)—-(Al11l), (A15). If U™ is defined by (2.3), then

(3.5) {inv"n% M}m
N

< Qf (3 sul#~(@1); + o™ r-vrcrn

=1

1/2
+ llugli? + || sup |b"(6)|||§]At")

+ |lupllwr (L)) + ”UOHL‘(Q)}»

PROOF: In (2.3), let v = U™ — up} € V, to see as in the previous argu-
ment that

(36) (06U)", U™ ~ uB) +g|[U"
< @{llsup " @)lly + || sup 1Bl

+ ||9n||§1-—1/2(pN) + [lup I3}
In discrete form we have that

(3.7) 96U (U™ —up)

U n
_ _ o_,D
=o( [, (6(w) - 8(0) s+ 6 Y(0° - u?))
1 v
O 0u + g [ (00 - 8™ d

The last term above is nonnegative, so the proof is completed as above
after multiplying through be At" and summing on n. i
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4. An elliptic projection. It has proven convenient in the analysis of
parabolic Galerkin methods to analyze the error in two parts, the first
between the actual solution and some elliptic projection, and the second
between this elliptic projection and the approximate solution [17]. This
will be convenient for our mixed problem as well. Hence we define an
elliptic projection @ € Vj + up for u € V + up by

(4.1) (a(8(u))kV(u — @), Vo) + (A (u — @), v)
+ (c(8(u))(u — @),v) =0 for all v € V.

The following estimates hold.

LEMMA 3. Assume (A1l)-(A12), (A14), (A17). Then for almost every
teJ,

(4.2) llu = dllo + ||lu — @llih < Q|lu — up|| A",
(4.3) 18:(u — @)|lo < Q{|lw — up|l+ + ||Oc(u — up)||r ™71,

PROOF: The elliptic equation (4.1) is linear for the given u, so it is
well known how to obtain the first estimate [4]. Furthermore, we can
obtain an estimate of the time derivative of u — @ by considering the
differentiated equation

(4.4) (a(8(u))kVE,(u — @), Vv) + (A (u — @), v)
+ (c(8(u))de(u — @),v) + (Be[a(8(u))kV(u — &), Vv)
+ (00 (u — @),0) + (Ale(B(u))](u — @), v) =0
for all v € V.

Easily with (4.2) we have that
(4.5)  10(u — @)l < Q{llu — upllr + 10e(u — up)ll-}A" 7,
since |8:[a(6(v))]| and |3¢[c(6())]| are uniformly bounded.
For the L? estimate of d;(u — @), note that if A = 0 and v = 1,

this estimate appears in [5, Section 4]. The proof given there needs
some modification in our situation. Solve the following dual problem for

Y EV:

(4.6a) —V - [a(8(w)k VY] + c(6(u))p = 8(u — @)  in £2,
(4.6b) —[a(6(u))kVe] - v —Ap =0  on In.
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As is well known, ||¢|l2 < Q||0¢:(u — @)||o. Now integration by parts for
the first equality and (4.4) for the second shows that

(47) (Bulu— @), d4(u — @) |
= (a(8(u))kVd,(u — @), V¥)

+ (A (u — @), ¥) + (c(8(u))de(u — @), 9)

(0(u))kV,(u — @), V(¥ —v))

(ABu(u — @), — v) + (e(0(w))ds(u — @), — v)

(Bula(Bw)IKY (u - @), V(% - v))

(B (u = @), % — v) + (Ble(B(u))](u — @), % — v)

~ (Bla(B(w) KV (u - ©), Vi)

— (B (u = ), 9) — (Bule(Bu))(u — @), )

< Q{[lI8e(u = @)llx + lu = @ll:]ll¥ = vll + llu = @llollllo }

— (B:[a(8(u))]kV (u — @), Vi) — (B A (u — @), )

for all v € V.

= (a
+
+
+

For the next to last term on the far right side of (4.7), using negative
norms (which we take to be those of the dual spaces of the corresponding
positively indexed spaces),

(4.8) | (e[a(6(u)]kV (u — ), V)|
< IV(uw = @)l -+ 18:[a(6(w)) ]k V|l
S V(u = @)l -4V,
since O;[a(8(u))] = 9pa(b(u))B,6(u)du € C®7(2). Also, for 6§ > 0,

there is a continuous linear extension operator E : H(2) — H G(IRd),
so for any j,

(09)  [10u; (= Dl < 100 B — Dty
< QIE(u — @)l gr1-+(rey < Qllu — tfl1-1-

By interpolation on (4.2), we obtain that
(4.10) lu = @lli-y < Qllu — upllrh™ 7.

(A nice summary of the Sobolev space theory used above can be found

in [9]).
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For the last term on the far right side of (4.7), we note! that a duality
argument implies

(4.11) lu — @l g-172(ry) < Qllu — up||-h";

hence, we make the estimate

(4.12) [(8eX (u = @), ¥)| < Qllu = @llg-1/2(ry) 10X ¥la
< Qllu — @l g-1/2¢rw) 1l

Since inf,ey, |[¥—v|l1 < Q||¥||2h, combining (4.2), (4.5), (4.7)-(4.12),
we obtain that

(413)  |8:(u — D)
< Q{[I10e(w — @)1 + llu — @ll1] R
+ llu = -y + llu = @l g-r2(rg) 1% ll2
< Q{llu — up|lr + 18:(w — up)|l- } R 7|0e(u — @)llo,

and the last estimate of the lemma follows. [

We need to make the following assumption, which holds for many V:
(A19) @]l poo(sswro()) < Q-
(See, e.g., [16], [14], and [15] and some of the references cited therein
for this result on certain standard finite element spaces defined over

quasi-uniform meshes.)
It remains only to estimate the deviation of U from 4.

5. An analysis of the continuous time procedure. In this section,
we present an analysis of the error u — U when U is defined by (2.2).
Combine (4.1) with (2.1) and (2.2) to obtain an equation for the error:

(5.1) (0e[6(u) — 8(U)],v) + (a(b6(u))kVi — a(6(U)kVU, Vv)
+ (b(6(u)) — b(8(V)), Vv) + (A(@ — U),v)
+ (c(6(w))i - c(BUYT, v)
= (f(6(u)) — F(6(V)),v) for all v € V.

1The author is indebted to Professor Mary F. Wheeler for this observation.

9



]



~ For Q, fixed below, our first choice of a test function in (5.1) will be

(5.2) v(z,t,t) = /t (i(z,7) = U(z,T)) e~ T dr € V.

We include the exponential expression for use in a Gronwall argument. It
is more customary to make a direct estimate and then apply Gronwall’s
inequality, but this simple approach seems to fail.

By the inverse inequality (A13),

(5.3) (a(6(u)k Vi — a(6(U))k VU, Vv)
= (a(6(w))kV(a - U), Vv)
+ ([a(6(w)) — a(8(U))]k Vi, Vv)
— ([a(6(w)) — a(8(V)))k V(@ - U), Vv)
> (a(6(u))kV(a —U), Vv)
= Ql16(u) = 6(U)lo|IVllo
x [IVitll g (2 + V(@ = U)lloh™4/2].

Further, we have that

(54)  a(6u)kV(@-U)-V /t (= U)e N dr

= _%a, [a(G(u))( /t ika(a —U)en" d‘r)zeQI‘]
+1 [@1a(6(w)) + Bsa(6(u))d:6(u)]

2
t 2
x ( / k'/2V (i - U)e’Q"dT) e@t,

t

Similar expressions hold for

(c(B(u))E ~ (OUT,0), c(Bw) (@ =D) [ (@=V)e7 dr,
and \(@—"U) / t(a —U)e 97 dr.
t
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We now easily obtain from (5.1) with Poincaré’s inequality that

(5.5) (&[G(u) _8(u), /t ‘i U)eer dr)
L %a,/na(a(u))([kl/’*’vw—U)e—Qlfdr>2eQﬂdz

t 2
+%Q1 /;7a(9(u))(/t k1/2V(a—U)e'Q"'d7) et dz

t 2
-16,/ A(/ (ﬂ—U)e'Q"'dT) et ds(z)
2 I'n t

- %at /n c(0(u))( /t i(a -U) e'Ql"dr)zeQ“d:c

<Q 26‘9“
0
+e[1+ V(@ - U)IZA™%]16(u) — 6(U)|3e "

]
/ V(i—-U)e 97 dr
t

Integration by parts shows

(5.6) /0 i (at[e(u) —8(u), /t ‘i U) e dr) it
. (e(uO) —8(U°), /0 ‘G- vyear dt)
+ /0 t (8(u) — 6(U),u — U) et dt
- [ o) - 60y - 0)
> /  (6(u) - 6(U),u — V) @t ds
- Q{ /Oi lu — @[3 dt + 16(u®) — 9(U°)||§}
/0 t(a —U)e~ 9 dt

2
b
0

so with Poincaré’s inequality and a sufficiently large @i, (5.5) integrated

=t o) — 601t + |
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over [0,%] yields
t
(5.7) -;— / (8(u) — 6(U),u - ) et gt
0

+3 /na(G(uo))(/oikIﬁV(ﬁ - U)e'Q"dt)zd:c

3 ([l sl

+ % /n c(9(u°))< /0 {(a _U) e‘Ql‘dt)zdx
<of | ' et dt + 8(u0) - oIz}

ren [ V(- O)I3l6) - B2 dt

< QR" 4 ehd / V(@ - U)|116(u) — 8(U) [Be~2 dt,

using (4.2) and (A15). We leave this partial estimate for the time being.
Now take in (5.1) as a second test function

(5.8) v=1u—U € V.
Since
(5.9) a(6(u))Vi —a(6(U))VU
= a(6(V))V(@ ~ U) + [a(6(u)) — a(8(V))] Vi

and a similar expression holds for ¢(6(u))id — ¢(8(U))U, we obtain im-
mediately from (5.1) with Poincaré’s inequality that

(5.10) (Bl6(u) — 8(U)],u — U) + 3 (a(8(U)KV (@ - V), V(@ - V)
+ (M@ =U),da-U) + (c(8U))(& —U),d — U)
< QlI6(w) — 6(V)|[5 + (B:[6(u) — 6(V)],u — @).
Note that for any Q2,
(5.11) 8:[6(u) — 6(U))(u — U)e~ 92!

—a[ [ @) - o)) dueo
+Qa [ (60n) - (V) e
+ {8:8(u)(u — U) — (8(w) — 6(U))Beu}e™ 22",
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(We remark that Wheeler and Dupont use a version of this type of
identity; see [17, Section 3.4].) The first two terms on the right side
are well behaved by Proposition 1; the last term is poorly behaved. By
(A16), it can be bounded as follows. For some w between u and U,

(5.12)
late(u)(u -U)—-(6(u) — O(U))Btu] = |(au9(u) — 8.0(w)) (u — U)6¢u|
< QI6(u) — 6(w)|? |u — U| < Q|6(u) — 6(V)|? |u— U]
< Q[(8(w) - 8)) (u = U/ 1 el — UP + Ju — af*);
the last step is by the well known inequality

1

Iabl S eP/P'p

+5=1,

€ ’ 1
la|? + ;,-lblp for any 1 < p < oo, 7

Y=

which implies that
|al? 6] = |ab|?[b'~# < Qab*#/(*+P) 1 b2

We now multiply (5.10) through by e~%2!, combine the result with
(5.11)-(5.12), and integrate in time from 0 to t. The last term can be
integrated by parts. Then Proposition 1, Poincaré’s inequality, and a
large enough @, yield the estimate

(5.13)  qll6(u) — O(U)||5e "
+ / (a(8UKV (@ - U), V(@ — U))e~%" dr
tO
+ [ @-0)a-v)eerar
0
+ / (c(6U))@ - U), & — U)e~97 dr

0
¢ 2
< Q{ J 10 = e dr + = il gy

+ (8(u®) — 6(U°),u® - U°)

t
+ / (6(u) = 6(U),u = U)*#/0Fe=Qar dr}
0

< Q{h“'*”‘” + ([ (6(w) — 6(U),u = U)

26/(146)
« e=Qa(148)7/28 dT) }’
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using Lemma 3 and (A15).
We can now combine (5.7) and (5.13) to obtain an estimate. A contin-

uation argument is required, so for some fixed Qo independent of A, let
T' = T; < T be the largest value of time for which (where J' = [0,T"])

(5.14) V(& = U)||L2(s;L2(2)) < Qoh%P/GA=D),

Because of Lemma 1, T' > 0 (but perhaps not uniformly so in k). Fix
t = t where ||6(u) — 6(U)||o attains its essential maximum on J'. Note
that in general for 1/2 < 6 <1,

- - - 6-1)/6
|abc|6 — |b|1 6(|b|26 1|ac|6) S |b|+(|a|6/(26 1)lbl)(2 1)/ Icla

and that r +y—12>r+ 8 —1 2> 2r3/(1 + B). Then from (5.13) and
(5.7), with J = [0, 1],

(5.15)  [16(u) = 8(U)1Zeo (sr;L2(02yy + IV (@ = U Z2 (5,122

< Q{h4rﬂ/(l+ﬂ) + (eh_d”V(ﬂ - U)”%:(j;Lz(r)))

\ 28/(1+8)
x ||6(u) — 6’(U)”Lco(J';Lz(n))) }

< Q{h“""/“*‘” + €28/(1+8) [HV(ﬁ — UI32(s.L2())

2dB/(38—1 2 e
+ (h- B/(38-1)|| (g — U)IILz(J;m(n)))

< 16(u) - o(U)M%w(J,;Lz(m)] }

provided that 38 > 1. We hide two terms for e small enough (with
(5.14)). Repeating the above for t = T" yields that

(5.16) ||6(w) — O(U)|lLe (o;22¢y) + V(@ = U)llz2(r;2(02))
< QR2TAIO+A),

To complete the continuation argument, suppose that T’ < T and
assume that r > d(1 + 5)/2(38 — 1) > 0. Then we have shown that

(5.17) V(@ = U)l|lL2(s;2(2)) < th"ﬂ/(l-h@) < %Qohdﬂ/(sﬂ_l)

for all A < ho for some hy > 0, since @ is independent of h and T".
Hence the maximality of T' requires that 7' = T and the argument is

completed.
By our analysis (see especially (4.2)-(4.3), (5.7), (5.13), and (5.16)),
with a few modifications, we have the following results.
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THEOREM 1. Assume (A1)-(A12), (A14)-(A17), (A19). Let U be de-
fined by (2.2). Define the two cases:

(1) (A13) holds and r > d(1 + 8)/2(38 — 1) > 0;

(2) a and c are independent of 6.

Then in either case, with 6 = 2r3/(1+ ), 6 =,

(5.18)  |16(u) — 8|l (ssz2(2)) + N8 = UllL2(s;m12)) < QRY,

(5.19) lu = Ull 2z (a2y) < Q{R® + 2771},
1/2

(5.20) {/OT (6(u) — 8(U),u = U) dt} < Qhé.

PROOF: Case (1) is exactly the full argument given above. Note that
(5.20) is of optimal order since 4r3/(1+ 8) —d/2 > r.

Case (2). In the case that a and c are independent of 8, our argument
simplifies substantially because the continuation and inverse inequality
arguments are not needed. To see this, note that only the first term on
the far right side of (5.3) remains; consequently, the same is true of (5.7),
which is now a complete error estimate. Finally, the estimate (5.13) is
completed directly with (5.7). B

REMARK 4: In Case (1), if (u) « 1 — |min{0,u}|* (recall that then
B = (e — 1)/a), then 38 > 1 requires that a > 3/2; furthermore,
r/d > (2a — 1)/(4a — 6).

REMARK 5: Case (2) (a and ¢ independent of §) arises, for example, in
Richard’s equation (¢ = 0) after the Kirchoff transformation u — 4 =

fou a(8(€)) d¢ and 6(u) — 6(a) [7].
Our results can be restricted to the strictly parabolic case.
THEOREM 2. Assume (A1)—-(Al2), (A14)-(Al15), (A17), (A19), with

046(u) uniformly positively bounded from below. Let U be defined by
(2.2). Define the two cases:

(1) (A13) holds and r > d/2~;
(2) a and c are independent of 6.

Then in either case, (5.18)~(5.20) hold with § = r(1 +7)/2, 6 = r.
PROOF: If the problem is strictly parabolic, then
(5.21) ql6(u) — (V)| < |u—U| < Q|6(u) — 6(U)|
and 3 = 1.

Case (1). Because of (5.21), (5.12) can be stopped at the second
inequality with S replaced by 4. Replace 26/(1 + 8) by (1 + v)/2 in
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(5.13) and (5.15)—(5.17), and replace 3/(38 —1) by (1++)/47 in (5.14)-
(5.15) and (5.17). Finally,r+7—-1>r(1++)/2and r(14+7)—-d/2 > r.

Case (2). This is a combination of Case (1) and Case (2) of Theo-
rem 1. §

For monotone flows we have the following specialized result.

THEOREM 3. Assume (A1)-(A12), (A14)-(A15), (A17), (A19), with
either Oyu < 0 and 0,0 monotone nonincreasing in u, or d;u > 0 and
0.6 monotone nondecreasing in u. Let U be defined by (2.2). Then
(5.18)~(5.20) hold with § =r + v — 1, § = 6. Moreover, if (A13) holds,
(5.20) holds with § = min{r,26 — d/2}.

ProorF: If d,u < 0 and 9,6 decreases, or if 8;u > 0 and 9,60 increases,
then (5.12) can be replaced simply by

(5.12") 8:6(u)(u — U) — (8(u) — 8(U))Beu
= (0u8(u) — 8,0(w))(u — U)dyu > 0

(for some w between u and U). As a consequence, the last term on the
far right side of (5.13) is absent, so (5.13) is a complete error estimate
and no continuation argument is needed.

We have (5.20) because either we can avoid the inverse inequality
argument of (5.3) by noting that

(5:22) |([a(8(w)) — a(8(V))kV (@~ U), Vv)| < QIV(@ = U)lo[[Vello,

or with (A13) we can follow the argument as it is given. il

REMARK 6: In each of the preceding results, the norms of the error are
bounded by h to the optimal power r or r—1 in the case where uniformly
in z, 8,6(u) is positively bounded from below and uniformly Lipschitz
as a function of u (then f = v = 1). Of course in this case, the argument
can be further simplified; in fact, only the second test function is needed
since the expression after the second inequality in (5.12) is controlled by
a large enough Q. (see [17, Section 3.4]).

6. An analysis of the discrete time procedure. In this section, we
present an analysis of the error u™® — U™ when U™ is defined by (2.3).
Our proof follows closely that given in the last section.
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Combine (4.1) with (2.1) and (2.3) to obtain an equation for the error:

(6.1)  (3[6(w) — 6(U))™,v) + (a(8(u™))kVE" — a(8(U™))kVU™, Vv)
+ (b™(8(u™)) = b™(B(U™)), Vo) + (A™(a@" — U™), v)
+ (c(8(u™))a" — c(8(U™)U", v)
= (f"(6(u™) — f(6(U™)),v)
+ (86(u)™ — 8:6(u™),v) for all v € Vs,

With the discrete exponential
n +1
nit = (H(l + QlAtk)) for n > 0,
k=1
set in (6.1)

(6.2) v(z,n,n) = »_(@* = U*)nr* At* € Vi

k=n
Again (5.3) holds (at time t,), as well as

(6.3) ]
a(B(u™)kV(@" - U™) -V Y (@ - Uk Atk

k=n
n

1 . _ _ -
= —=—= a6 ) Y KV(@E* - Ut At ) g
2At b1

- “<9(“">>(gk‘/’V(ak — Ut Atk)zn;‘-l]

n

2
+ 3@ualo) (KT — TR Ak o

k=n

J 2T — o)

f 2
AT Y K@t - Ut At") ny

k=n+1

+ a0 V(@ - Uens" AL

and similar expressions for terms with ¢ and A. Now from (6.1) we can
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obtain with Poincaré’s inequality that

(6.4)

CORIS TSI
k=n

1 . n 3 _ 2 . n
- Ea{ /n a(8(u' >+l))( > KV - Uk "At’.‘) n§>dz]

k=()+1

n 2
+ %Ql / a(0(u"))( Y Kv(ak — Uty At") nt~!dz
n

k=n

1.0 , ° _ 2 "
- 30 /P ,\<>+1( 3 (u"-—U")nl"At") ni’ds(z)]
- N

k=(-)+1

_ %B:LC(O(“(')+1))( i (k- U")nfk Atk)zng') d.’L‘]n

k=()+1
n+1
<o{ 3

JJ=n

Zkl/‘Zv(ak _ Uk)nl—k Atk
k=3

2
j-1
Ut
0

; ua?ew)u%zqt,._,,t"];mm)m"n;"“}
Fe[L + V(@ = UM)2A4) [6(u™) — 6U™)2nr ™,
wherein we use that

(6.5)  1186(w)™ — 8:8(u™lo < QNOFO(wI| L3 (tn-r taliL2 () (AL /2.

Now note that summation by parts yields

(6.6) zn: (a[o(u) — 6", Zn:(ak —U*n* At") At"

n=1 k=n

= - (9(u°) - 6(U°), fj(a* —U*yn* Atk)

k=1

+ 5 (6u™) - B(U™),u™ = U™) 7™ A"

n=1

n
=) (8(u™) — 6(U™),u" — ") 9y ™ At™
n=1
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hence, with Poincaré’s inequality, a sufficiently large Q;, a sufficiently
small At = max; At¥, and (A18), (6.4) multiplied by At" and summed
on n from 1 to 71 gives

(6.7) % S (B(u™) = 6(U™),u" — U™) g A7
n=1

n 2
+% /n a(0(ul))(2kl/2V(&"—U")nl"‘ At") dz

k=1

< Q{ (A2 + Y [u — "I A" + [6(u°) — o<U°)n§}
n=1

+eh™? Y V(@™ - U)[F116(u") — 8(U™)|f2ny ™+ At”
n=1
< Q{r*" + (At)*}

+en=¢ 3 |IV(@" - UM)IE)6(u™) — 6207 AL
n=1

We turn to the second estimate. In (6.1) let
(6.8) v=4a"=U" € V.
Again noting (5.9), we easily obtain with Poincaré’s inequality that

(6.9)
(86(u) — BU)|™,u™ = U™) + L(a(8U™)kV(@" — U™), V(@™ — U™))

+ (Ma" =-U"™),a" -U") + (C(H(U"))(ﬁ" -U™),a" - U")
< Q{l16(u™) = 8(U™G + 1076(u 22 (gt _, ta)sL2 2y A"}
+ (B[6(w) — 6", u™ — ).

Analogous to (5.11), we note that with nF" = ([Tr_,(1 +Q2Atk))i1,

(6.10)  0B(x) — B(V)"(u" — U™)ny ™
= o] [ (0) - o) dun®
U

n

+Qa [ (600 = 6U™) dun™ - B,
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where in the third term, E® = E' + E} can be written as

(6.11a) E} = —88(u)"(u" — U™) + (8(u™) — 6(U™))du™,

(6.110) Ef = (BQ0™) 60" )ou" - 5z [ (6u™) ~ 6(w) s

.
- 5 [ () - 80" )

yUn-1

Analogous to the previous section, multiply equation (6.9) through
by n;"*!At", combine the result with (6.10), and sum on n. After
summing the last term in (6.9) by parts, Proposition 1, a large enough
Q2, and a small enough At yield the estimate

(6.12)
qllé(u™) — 8U™)|IZnz "

+ % i (a(G(Uk))kV(ak — Uk), V('&k _ Uk))nz_k-H Atk

k=1

< Q{(At)2 + Z 18(u — @)% (1307 *** At* + |lu = @1} oo 1120y
k=1

+ (6(u®) — (U°),u® — UO)} + Y Efptt Atk
k=1

< Q{h2(r+7—-1) + (At)z} + Z Ekn;k-i-l Atk,

k=1

wherein we use (A18) to account for the time lag in a summation by
parts term, (A15), and Lemma 3.

We now obtain bounds for E™ defined by (6.11). For some w between
u™ and u"~! and some W between u™ and U", by (A16)-(A17) and
analogous to (5.12),

(6.13) |
E} = —[8,0(w) — 8,8(u™) + 8,0(u™) — 8,8(W)] (u™ — U™)ou™

< Q[lw —u™" + 16(u™) — 6(W)|P]|u™ — U™|

< Q(At™) +16(u™) — 6(U™)P]ju" — U™

< Q{(Ar" + [(8(u™) - 6U™) (u” = U™)]°} + efu” — U™,
where § can be either 23/(1 + ) or B. For the three terms in EJ}', note

that the last two are negative, so they can be used to control the other
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term. By using the Mean Value Theorem twice, once for functions and
once for integrals, note that for some w between u™ and u®~1!,

610) [ (o) -6) du= [ aubw(m)wn - pds

= %6u0(w)(u" )

With a similar expression for the other integral term in EF, we have for
some W; and W, between U™ and U™™! that

(6.15)
Ej = [0.6(W1)0U™ 8u™ — 18,6(w)(du™)? — 18,8(W,)(8U™)2] At™

= [(8uB(W1) — 8u8(W2))OU™0u™ + 1(8,8(W2) — 8,8(w)) (Ju™)?
— 30,0(W2)(du™ — 8U™)?| At™
< Q{I8(Wh) = 6(WL)P|U™ — U™ | + W, — w|7AL"}.

This last expression is easily estimated:

(6.16)
6(W1) — 6(W2)|P[U™ — U™ | + [W; — w|7AL"

< Q{[I6(u™) — 8U™)IP +16(u"") — 6U)IP + (At™)P]
x [lu™ = U™ + ™~ = U] + At"]
+ [ = U™ + [u™ = U™ 4 (At ] A )
< Q{I6(u™) — 6U™)* + [6(u"1) — BU™)P + (At")*F}
+e{lu —U"]? + [u""t = U2},

since 1/(2 — ) 2 v > B. Combining (6.13)-(6.16),

(6.17) E"=E} + E}
< Q{(Ar")? + [(8(u™) - 6U™) (u" - U™
+ [(o(un—l) _ g(Un—l ))(un—l _ Un—l)]ﬂ}
+ e{l,&n - Un|2 + |un _ ﬁ"|2

+ I,&n-—l _ Un—1|2 + Iun—l _ ,&n-—llZ}.
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Combining (6.17) with (6.12), we obtain with Poincaré’s inequality
and (A18) that

(6.18)
18(w™) — 8(U™)|IZnz ™ + Y IV (@* — UX)|3ny "+ Atk
k=1

< Q{h2(r+7—1) + (At)w

+3 (8(u*) - 6(U*),uk — U*)Pnsk Atk
k=1

+(607) 07" ~ U 8t + o0 - 0O
< Q{h2(r+'r—1) + (At)w + h2BA¢

+8(u™) = 6U™G IV (u™ = U™)lign; ™ A"

+ (il (8(u¥) — 6(U*),u* — UF)ny*/? At")ﬂ}.

k=1

Finally, we require an induction argument, so for N' > 1 suppose that

N'-1
(6.19) 3 IV(@E" - U™ At < Qohds/(8-1),

n=1

which is vacuous for N' = 1. Fix n = 72 where ||6(u") — 6(U"™)||o attains
its maximum on integers between 1 and N'. Note that in general

|ab|ﬂAt < e{az + b2At} + Q(At)u—ﬂ)/z(l_ﬂ),

so (6.18) with (6.7) gives (if 26 > 1 and since r +y — 1 > rf8 and
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(2= B)/2(1 - B) > 26)
(6.20) _
I18(u™) — 8U™)|IZ + D IV (a* - U*)|E Atk
k=1
< Q{h?'ﬂ (A 1 [(u™) — BUM IV (u® — U8 A
-1 B8
; (eh-" Y V(" - UM))3 At [6(u”) - 0<U"‘)u%) }

k=1

< Q{h”’g + (A1) + e[||6(u”) - 6UM)5 + IV (" = U™)|§ At"]

fi—1
+éP [ IVt - Ur)|E atk
k=1
-1 (28-1)/8
+ (h“”’/(”‘” Z IV(a* — U*)))3 At")
k=1

x lew™) - oumie] }

With the induction hypothesis (6.19) we hide four terms, and then a
repetition of the above for n = N' yields that

NI
(621) max [6(u™)—8U™|5+ D IV(@E" - U™} A"
n=1

0<n<N’

< Q{R* + (At)*}.

To complete the induction argument, make the assumptions that r >
d/2(28 — 1) > 0 and, as h and At tend to zero, h=4/2(28-D At = o(1).
Then

Nl
(622) 3 IV(@E" - UM)E At® < Q{h2™ + (At)?P} < QohtA/(25-D)

n=1

for all h < hg for some fixed hy > 0, and thus the induction can be

continued.
From (4.2)-(4.3), (6.7), (6.12), (6.18), and (6.20) we have the following
results.
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THEOREM 4. Assume (A1)-(A12), (A14) (A19). Let U™ be defined by
(2.3). Define the four cases:
(1) (A13) holds, r > d/2(28—1) > 0, h=4/2(28=1)At = o(1) as h and
At tend to zero, and 6; =18, 6, =B, 6, =1, 85 = 1;
(2) a and c are independent of § and §; =1, 6, =B, 6, =1, 63 = 1;
(3) (A13) holds, r > d(1+8)/2(38—1) > 0, h=4/GA-1)(At)%2 = o(1)
as h and At tend to zero, and 6; = 2rﬂ/(1+ﬂ), 62 = min{1/2,~},
61 =r, 62 _62(1+ﬁ)/2ﬂy .
(4) a and c are independent of 6 and 6; = 2rB/(1+ ), 6 = min{1/2,
7,28/(1+B)}, =7, & =1.
Then in each case, for At (and h in Cases (1) and (3)) sufficiently small,

N 1/2
629) max 10w") - 60"l + { 3 IV - Ui A

n=1

< QA% + At%},

N 1/2
(6.24) { IVt -Um3 At"} < QR + BTt + At

N 1/2 i i
(6.25) { Z (6(u™) - 6(U™),u™ —U™) At"} < Q{R% 4 (At)*}.
n=1
PROOF: Case (1) is the given argument. The last estimate is optimal
because of the assumptions relating r, d, 3, v, h, and At.

Case (2). The last term on the right side of (6.7) is missing, and this
estimate directly completes (6.18) if we do not extract the nth term from
the last sum.

For the last two cases, note that by Proposition 1, we can replace
(6.15) with

(615)  Ef < QIO(U™) - 0(U™)] ~ g(At™)H|6(U™) ~ H(U™ )P
< QAL
and then use § = 23/(1 + ) in (6.13). Continuing the argument, we

obtain Cases (3)—(4) in a manner similar to Cases (1)—(2) (see also the
proof of Theorem 1). |

In the strictly parabolic case we have the following results.
THEOREM 5. Assume (A1)-(A12), (A14)-(A19), with 3,6(u) uniformly
positively bounded from below. Let U™ be defined by (2.3). Define the

two cases:
(1) (A13) holds, r > d/2v, and h=%/?7At = o(1) as h and At tend
to zero;
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(2) a and c are independent of 6.

‘Then in either case, for At (and h in Case (1)) sufficiently small, (6.23)-

(6.25) hold with 6; =r(1+7)/2, 82 =(14+7)/2, 61 =7, 6 = 1.

PROOF: This theorem is analogous to Theorem 2. We recall (5.21) and
that 8 = 4. Noting that

la] 6] < |af' 7 + [p|!+7
and simplifying (6.13)-(6.16), (6.17) can be replaced by
(6.17') E" < Q{(Atn)l-i-'y + Iun _ Un|1+7 + Iun—l _ Un—1|1+-y}.

This allows us to obtain the results as in the proof of Theorem 2. }

REMARK 7: Cases (1)-(2) of Theorem 4 (which do not make use of
(6.15')) and Theorem 5 give optimal bounds for the error in the case
where uniformly in z, 3,6(u) is positively bounded from below and uni-
formly Lipschitz as a function of u (recall then 8 = v = 1). Of course
in this case, the argument can be further simplified.

In the case of monotone flows, we have the following.

THEOREM 6. Assume (A1)-(A12), (A14)—(A19), with either dyu < 0
and 0,6 monotone nonincreasing in u, or dyu > 0 and 8,0 monotone
nondecreasing in u. Let U™ be defined by (2.3). Then, for At sufficiently
small, (6.23)—(6.25) hold with 6; =r 4+~ —1, §; = min{1/2,v}, & = é;,
82 = 6,. Moreover, if (A13) holds, with now §, = min{r, 26, — d/2},

N 1/2
(6.26) { > (6(u™) - 6(U™),u" - U™) At"}

n=1

< Q{R% + At + At?52p—4/2),

ProoF: If 8;u < 0 and 9,0 decreases, or if ;u > 0 and 8,0 in-
creases, then in (6.13), —[8,6(u") — 8,0(W)](u™ — U™)Au™ < 0, so
E} < Q(At™)?7 + elu™ — U™|%. With (6.15'), (6.12) is easily completed.

We have (6.26) because either the inverse inequality argument does not
arise if we use (5.22), or (A13) allows us to follow the given argument. i
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