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1 Introduction

The initial goal was to parallelize the Simplex code CPLEX. A good approach seemed
to be to study special types of linear programs. We decided to study LPs of the type

min Iz
st. Az =50 (1)
i:<z<u,,

whereby the number of columns of the matrix A is much bigger than the number of
rows. Such types occur in crew-scheduling problems of airlines. The examples which
we studied had about 800 rows and up to five million columns.

If you try to solve such big problems, you will have a lot of difficulties: the needed
storage space may be too big, high degeneracy occurs and it takes an enormous
amount of time to try to solve. But if you cut the problem (for example down to
20,000 columns), solve that and then use the solution of this problem for a bigger one
(say 100,000 columns), you will be able to solve it much faster.

To solve the 200,000 problem, we took the basics of the 100,000 solution, but that
still took too long to solve. That observation lead to the basic idea of our approach.

The basic idea to solve (1): Select a smaller number of columns J = {iy,...,%}
of the matrix A. Construct the sub-LP:

min Ty
s.t. Ajy=5b
eJ S Y Suy ’ (2)

whereby A; is the matrix of all selected

columns of A .

Solve this subproblem (2).
If the solution of the subproblem is optimal, then it is feasible for LP(1), but not
necessarily optimal. Therefore, we have to price out all not selected columps of the

matrix A. If we find columns with negative reduced costs, we choose new columns
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out of A, generate a new subproblem with Ay, and solve that new subproblem. The

objective function value improves with every solution of a subproblem. So, with some

luck, we will eventually have positive reduced costs for every column of A.

2 The development of the algorithm

2.1 The basic algorithm

0.

Choose the size of the subproblems (number of columns of SLP = smac)

. Select the first “smac” columns (= J) out of ALp

. Generate the sub-LP:

min cJy
st. Ajy=5b
li<y<u

. Load the sub-LP into CPLEX (callable library)
. Optimize the sub-LP with CPLEX
. Get the solution and the basis B of the optimal solution

. Price out the columns of the matrix A.

If all reduced costs are positive — STOP!
The optimal solution of the last SLP is also
the optimal solution of LP(1).

Otherwise: go to 7.

. Select new columns J out of Ap p (choosing the z with the most negative reduced

costs first, but with B C J).
Go to 2.



2.2 Methods of variation

I decided to describe the development of the algorithm as a “history of growth.” The
basic idea was implemented, test runs were performed with various problems, and the
behaviour was observed.

The problems fitld and fit2d behaved very well. With aa6 the problems started:
I observed a kind of “cycling”, so something had to be changed (2.2.1). I also imple-
mented the steepest-edge pricing for choosing the new columns, which had to be put
into the new sub-LPs (2.2.3). There were also a lot of the parameters to change.

First, I will describe the “good ones,” those which lead to better results than

without using them.

2.2.1 Cyecling

In problem aa6, I observed a kind of cycling: The objective function value was optimal,
but the algorithm did not stop. I observed that the same subproblems were solved over
and over again. For example, in every iteration with number 2n (n = k, k+1. k+2,...)
the columns I; entered the subproblem, and in iterations with numbers 2n + 1 the
columns I, entered the subproblem (for n > k, I, I, C I, I = all columns of A). The
idea was to mix these columns (/; U I;) together in one subproblem.

Whenever “circling” occurs, do:

e Choose just 80% of the columns for the new subproblem out of the nonoptimal
variables and “fill-up-rest” (the factor 0.8 * smac is called: fill-up-factor)

e Choose the other 20% out of these columns, which entered the current subprob-

lem as nonoptimal columns.

If this did not help to stop the program or to get away from the sticking point,
I put a restart in, which is: I keep just the basis of the last sub-problem and select
randomly the rest of the variables. This gave much better results with aa6 and also
with aa 20,000p. I ran the problems with various fill-up-factors. The best one seemed

to be around (0.7 - 0.8) *smac. (smac is the number of variables in the subproblem).
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2.2.2 Iteration-limit

Another idea was to not optimize each subproblem completely. CPLEX just per-
formed “maxitcp” iterations for each subproblem. But the question was how to
choose maxitcp. |

With the very small problem “fit1d”, the best results were with pricing = 0 and
cutting down the iteration-limit to (0.3 * smac) (see Table 1). That’s a small number
in this case.

On the other problems I got the best results with maxitcp = smac/10 or smac/2.

2.2.3 Steepest Edge Pricing

The next idea was to use another kind of pricing: steepest edge. Before we chose
the columns with minimum reduced costs. In steepest edge we choose the minimum
normalized reduced cost columns, which corresponds to choosing the edge of steepest
descent of the objective function.

But to compute the normalized reduced costs, you have to calculate the norms
of each column. This takes a lot of time, but you can get a better criterion for how
to choose the best ones out of the nonoptimal variables. In the following, I call this
implemented procedure “ONENORM”.

In Table 3.1.4 you can see that the time for calculating these norms increased very
rapidly. Therefore, I tried one more idea (“SAVEPRICTIME"). Instead of calculat-
ing all the norms in every case I just calculated them if the number of nonoptimal
variables was much greater than the number of columns to be chosen. If the num-
ber of nonoptimals is very high, then it suffices to compute the norms of just these
variables, which have the best reduced costs, and then choose the best of them.

The algorithm is now:
e Sort all the variables in decreasing order by reduced costs.

o If the number of nonoptimal variables is very high, then:



— Take the best (2 * smac) of them
— Compute the norms of these variables
— Sort them again

— Take the best ones into the new subproblems
e Else
— Take all of them into the new subproblem.

I got very good results in doing this. The time decreased, especially in subproblems
with a smaller size (comp. aa50,000p, aal00,000p).
These were the “good” variations I tried. Now I describe the other ideas, which

lead to worse results or lead to no significant change.

2.2.4 Number of Restarts

To change the number of restarts, either do more or less of them. If you do a restart
too often, you can’t see any improvements in the behaviour of the algorithm. If the
algorithm notices that there was no improvement in the objective-value for several
iterations, it will do a restart.

I tried to vary this parameter, MAXCIRC, but the initial value (= 4) seemed to
be the best solution (but see 3.1.5).

2.2.5 Prefer old variables

The algorithm ended with better results if it did not fill up all free variables with new
ones. That lead to the suggestion that it must be better to have the old variables
in the subproblem if possible, and just choose the nonoptimal variables as new ones.
This lead to an algorithm that was very badly behaved. The number of nonoptimal

variables didn’t decrease, but instead went up and down all the time.



2.2.6 Fill-up-rest

The best way to fill up the rest of the columns of the subproblem depends on the
~ problem. Sometimes it seemed better to choose the first ones (fit1ld), or the last ones.

I decided to take every tenth column and to start randomly on one of the beginning

columns.

2.3

The Algorithm

2.3.1 Main

1.

[ 3]

Read the problem (LP).

Read the number of columns for the sub-LPs (= smac).

Select the first “smac” columns oﬁt of Ap p and initialize the subproblem
(ARRAYS: select, boolsel, statvar)

Set parameters for the sub-LP
(maxitcp, maxnopt=fill-up-factor, MAXCIRC, ...)

(Procedure Gensubprob)
Generate the sub-LP for loading into CPLEX

(copy the selected columns into one memory location)
Load sub-LP into CPLEX (callable library)

Optimize sub-LP with CPLEX

. Get the solution and the basis B from CPLEX

(Procedure Selectcol)

Pricing: Generate the reduced costs of all columns of Aj p not in
sub-LP. If all reduced costs are positive — STOP!
Optimal!



Otherwise: Select new columns out of Ay p: the most negative ones: If neces-

sary, then generate the (“steepest edge”) norms.

2.3.2 Selectcol

1

2.

-1

Select all columns which were in the basis of the last sub-LP
If “restart”, then select the first columns — STOP.

(Pricing)

Calculate the reduced costs of every nonselected column if the solution of the
last sub-LP was “optimal.”

Otherwise (Case: Maximal iteration limit was reached before the solution was

found), calculate the same for the selected columns also.

If there are more columns with negative reduced costs than needed, sort the

columns in increasing order of reduced costs (“Bucketsort”).

. Take the best of them (at most 2 * smac),calculate the norms of columns, and

calculate the (steepest-edge) reduced normalized costs. Sort them again.

Select the columns out of the buckets, but at most either (fill-up-factor *smac)(if

“circling” is active) or smac.

. If “circling” is active, then select the saved columns (= nonoptimal columns of

the last sub-LP).

. If (#selected < smac) then fill-up the rest “randomly”.

2.3.3 Gensubprob

1.

2.

For all columns which are new selected (= were not selected in the last sub-LP),

generate the right-hand side.

For all selected columns generate the arrays boolsel, statvar, scstat.
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3. For all columns which were selected before, but not now, generate the right-
hand-side.

4. For all selected columns generate the data to load into CPLEX for matrix
Ag_1,p (smatbeg, smatcnt, smatind, smatval), the objective function coefficients
(sobjx), and upper/lower bounds (sbdl, sbdu).

3 Results

3.1 The Test Problems and their Results

In the following I describe the various test problems. Here you can see the results

obtained from trying the various ideas on every particular test problem.

3.1.1 fitld

3 started with a small one:
# rows: 4

2
# columns: 1026

CPLEX needed 759 iterations to solve it (pricing = 1) in 50.05 seconds and 1082
iterations with pricing = 0 in 9.68 seconds.

The method did not lead to better results in most cases. The test problem is too
small. But here you can see the differences with the various sizes of the maximum
iteration limit for every subproblem. (see Table 1).

The best solution I got here was a user time of 6.77 seconds. I reached that
by choosing the number of variables of the subproblem (smac) equal to 100, and a
maximum iteration limit per subproblem of 30 (0.3 * smac) (pricing = 0). You can
read the following out of the table: In this case there were 45 subproblems to solve.
Twenty-four of them stopped before an optimal solution was found, and the average
iteration count was 23. None of the subproblems did more than 30 iterations (That’s



clear, because the maximum iteration limit was 30). To solve the test problem, 1035

iterations were needed, which took a total of 6.77 seconds.
3.1.2 aab

# rows: 541
# columns: 4486

CPLEX needed 4581 (2137) iterations (with 2137 in Phase I) to solve it (with pricing
= 6) in a time of 38.86 seconds on the CRAY-Y-MP. This is a very hard problem.

I got the best results by choosing a size of 2500 variables for the subproblem, and
it took 51.77 seconds to solve. Before implementing the steepest-edge pricing, I got
the following results:

smac LP’s to solve  Iterations  usertime (sec.)

1500 28 9099 90.73
2000 14 6133 59.55
2500 12 4764 S1.77
3000 12 4939 57.67

3.1.3 aa20,000p

This is the smallest of the problems we are interested in.

# rows: 837
# columns: 20,000
# const. nonzeros: 149,371

CPLEX needed 4759 (1020 Phase I) iterations in 58.38 seconds to solve it with pricing
= 0 and 1726 (513 Phase I) iterations in 32.19 seconds to solve it with pricing = 6
(steepest-edge pricing) on the CRAY-Y-MP.

Results:



without ONENORM with ONENORM /before SAVEPRICTIME

smac | LP’s iterations usertime/sec. | LP’s iterations usertime/sec.

900 | 21 821 13.83 17 743 13.33
1000 | 16 800 12.15 18 853 16.97
1200 | 16 770 13.53 16 786 13.50
1400 | 18 1008 18.97 11 680 10.85
1600 | 14 712 14.79 12 749 14.62
1800 | 15 761 17.37 13 752 17.03
2000 | 13 711 16.38 15 760 20.08
3000 9 695 17.98 12 691 22.67
4000 | 13 840 33.48 11 848 30.56
5000 | 12 1004 41.14 13 1008 43.55

If you take a look at the distribution of the times (see Table 2), vou can no-
tice that they changed: the procedure CPLEX needs much less time than without
ONENORM. The procedures Selectcol and Bucketsort now needed 40% of the whole
usertime (especially if you choose smaller subproblems. In the bigger ones, there was
no significant change.). So it is possible in this case to decrease the time by paralleling

and vectorizing the algorithm.

3.1.4 aa50,000p

The first 20,000 columns of this problem are exactly that of the aa20,000 test problem.

# rows: 837
# columns: 50, 000
# const. nonzeros: 380,535

The best way to solve this problem with CPLEX was first to solve the aa20,000p
problem and then to start the aa50,000p problem with the optimal solution of that.
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If you add both together you get a total iteration count of 2623, and a usertime of
99.45 seconds (pricing = 6) on the CRAY-Y-MP.

Some results with the new algorithm are in the tables below.

smac | LP’s iterations time for optimizing whole usertime/sec.
the subproblems/sec.

1000 | 107 3396 85.74 578.40
1500 | 49 2581 62.61 209.76
2000 | 34 2374 59.66 102.95
2500 | 27 2606 63.02 104.45
3000 | 23 2121 62.98 79.01
3500 | 23 1886 67.89 76.90
4000 | 20 2431 71.71 88.35
4500 | 25 1969 93.87 104.69
5000 | 20 2047 85.97 95.57
5000 | 21 2109 103.13 113.46

If you look up the results with ONENORM, the time for optimizing the subproblems
with CPLEX is relatively constant, whereas the whole usertime increases very much
(especially for the smaller subproblems).

Especially in these cases, the implementation of SAVEPRICTIME is very efficient
(see last table in this section 3.1.4).

I got these results without any iteration-limit and with a fill-up-factor of (0.8 *
smac). I then tried an iteration-limit of (smac/10) and (smac/20). You can see the

results in the following tables:
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Results with ONENORM (before SAVEPRICTIME)

Max. it-limit = smac/20 Max. it-limit = smac/10
smac | LP’s iterat. optim. wut/sec. | LP’s iterat. optim. ut/sec.
1500 | - - — - 49 2581  62.81 210.40
2000 | 31 1916  50.87 115.15 | 31 2118  54.26  96.68
2500 | 32 2280 68.42 12250 | 27 2587  63.02 104.59
3000 | 28 1808  69.33  90.68 19 2160  54.43 69.33
3500 | 12 1358 46.83  53.87 21 1260  61.91 70.19
4000 | 22 1951 7447  98.64 20 2431 71.88  88.56
4500 | 18 1780  69.39 77.72 25 1969  94.11 104.94
5000 | 21 2205 94.09 104.55 | 20 2047 86.09  95.71
5300 | 21 2689 108.87 119.76 | 21 2109 103.30 113.62

The results with smac = 3500 and max. iteration-limit = smac/20 are fantastic, but
it may be luck. Compared with the results with no iteration-limit you can see an
improvement, especially for the small subproblems (smac < 4000). So I decided to
test runs with an iteration-limit of smac/10.

[ also decided to try out another fill-up-factor: to fill 90% of the new subproblem
with non-optimal variables if the algorithm notices that the objective value didn’t

change. The results were worse (before, this factor was $0%).
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Results with ONENORM, Max. it-limit = smac/10 and

Fill-up Factor “maxnopt” = 0.9 * smac
smac | LP’s iterations optim./sec. ut/sec.
1500 | 62 2791 80.57 305.18
2000 | 49 2742 86.50 226.72
2500 | 31 2249 64.97 124.30
3000 | 28 2189 73.35 91.26
3500 | 21 1760 61.88 70.16
4000 | 27 2257 92.66 112.04
4500 | 25 1969 94.13 104.97
5000 | 20 2047 85.94 95.53
5500 | 21 2109 103.05 113.37

I tried it again with a fill-up factor of (0.7 * smac), but I had implemented
SAVEPRICTIME by that time.

Results with SAVEPRICTIME, Max. it-limit = smac/10

maxnopt = 0.7 * smac maxnopt = 0.8 * smac

1500 | 36 2567 51.56  91.57 |35 2679 " 51.58  90.86
2000 | 35 2593 62.62  95.26 |26 2312 47.71  78.66
2500 | 22 1851 47.03 63.85 |25 2194 56.06 74.70
3000 | 25 2161 65.14  83.42 |22 1887 58.00 75.45
3500 | 21 1760 ? 70.23 |21 1760 61.79  70.08

4000 | 24 2200 83.92 103.38 2290 77.84  96.50
4500 | 25 2137 98.84 109.73 2137 98.66 109.52
5000 | 17 1884 75.25 83.84 |17 1884 75.03 83.61
5500 | 22 1971 105.38 116.15 |22 1971 105.26 116.01

NN
[SL I )

The differences are not very big between the two, except that the fill-up-factor
(0.8 * smac) is a little better than (0.7 * smac). But you can see the big improvement
of the concept “SAVEPRICTIME”, especially on the smaller subproblems.
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3.1.5 aal00,000p

# rows: 837
# columns: 100, 000

# const. nonzeros: 770,645

The first 20,000 columns of this problem are exactly that of the aa20,000p test prob-

lem. Therefore, first solve the smaller problem and use the optimal solution of that

as advanced basis to solve the bigger problem. The total iteration count was then
3956 and the test time 531 seconds on a CRAY-2.
First, I ran this problem without ONENORM. You can see the results with no
iteration-limit and an iteration-limit of smac/10 in the table below. (see Table 3)
Cutting down the iteration-limit to smac/10 seemed to be a good solution. I tried
the same with smac/20, but the results were worse.

TABLE 3
Results Without ONENORM
No iteration-limit Max it.-limit = smac/10
smac | LP’s iter. ut/sec. | LP’s iter. optim./sec. ut/sec.
3000 | 62 8261 576.30 | - - - -
3200 | 56 9372 578.97 | 53 6931 456 507.22
3400 | 36 10,289 454.29 | 48 6526 430 475.20
3600 | 40 5289 389.74 | 37 4891 322 356.62
3800 | 43 7087 490.35 | 41 6020 410 449.79
4000 | 39 5652 43192 | 31 5169 ? 357.79
4200 | 35 5715 414.55 | 40 5805 423 461.63
4400 | 36 6356 452.09 | 38 5300 411 448.43
4600 | 44 5424 512.89 | 14 4111 184 198.79
5000 | 39 5406 507.37 | - - - -
5500 | 35 6348 540.32 | - - - -
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After I had implemented ONENORM, the iteration number went down, but not

the user time.

Results with ONENORM,

Max. it-limit = smac/2, pricing = 6
smac | LP’s iter. optim./sec. ut/sec.
3400 | 42 5209 339.60 498.48
3600 | 40 5630 360.91 640.69
3800 | 33 4878 306.23 433.13
4000 | 32 4804 311.88 447.09
4200 | 39 6089 426.80  621.72

Here I seemed to get better results with an iteration-limit of smac/2 instead of
smac/10.
The concept of SAVEPRICTIME got the best results. I tried this with a fill-up-

factor of (0.7 * smac) and (0.8 * smac).

Results with ONENORM + SAVEPRICTIME, Max. it-limit = smac/2
maxnopt = 0.7 * smac maxnopt = 0.8 * smac

smac | LP’s iter. optim/sec. ut/sec. | LP’s iter. optim./sec ut/sec.
3000 | 34 4375 244.10 336.03 | 58 11,742 553.01 894.77
3200 | 39 4450 297.14 385.69 | 31 4562 255.99 358.59
3400 | 32 4882 275.11 350.90 | 35 4816 292.77 395.46
3600 | 38 6029 355.18 47169 | 39 5434 349.34 518.88
3800 | 29 4448 264.62 334.56 | 35 5029 320.71 407.19

4000 | 34 5109 329.74 420.10 | 38 5020 356.69 452.05
4200 | 31 4762 313.48 433.00 | 39 5048 384.82 543.40
4400 | 33 4749 351.89 428.01 | 29 5035 330.88 423.26
4600 | 32 4285 334.31 399.34 | 29 4497 323.52 335.69
4800 | 34 5155 391.46 493.01 | 38 5188 437.88 543.94

5000 | 29 5217 360.95 477.76 | 39 5653 481.43 620.92
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You can see that the times decreased tremendously. The time of smac < 3000 in
the case maxnopt = 0.7 * smac would be very interesting (I did not have more time
to do test runs, unfortunately).

I also changed the number of restarts. Before, a restart was done every MAXCIRC

= 4 times, if there was no change in the objective function value. Now I tried

MAXCIRC = 10:

Results with ONENORM + SAVEPRICTIME, MAXCIRC = 10

Max. iter.-limit = smac/2; maxnopt = 0.8 * smac

smac | LP’s iteration optim./sec. ut/sec.
3400 | 35 5322 305.16 413.74
3600 | 33 5363 309.41 458.09
3300 | 30 5054 285.64 372.13
4000 | 29 5293 299.36 391.31
4200 | 37 5237 380.51 543.76

This seemed to lead to better results, but I did not have the time to continue

research in this direction. However, it looks promising.

3.1.6 aa200,000p

# rows: 837
# columns: 200,000
# nonzeros: 1,535,412

Although I started the problem with an advanced basis (the solution of the aa100,000p
problem), CPLEX did not reach a solution after 8 hours. I stopped it after 50,000
iterations without a solution on the CRAY-2.

Before I had implemented ONENORM, I started testing on the CRAY-Y-MP with
smac = 6000. The behaviour looked nice, but the connection to the CRAY-Y-MP
was closed several times before the program stopped.

16



The network was a big hurdle for that problem, because it broke down several
times a day. I had to start the same program over and over again.

After I had implemented ONENORM and SAVEPRICTIME, I ran this problem
with smac = 3000, 4000, 6000 and 7000 with different parameters. In all cases, the
network broke down or it ran several hours without coming to an end.

So I tried it with 10,000 columns. There I got a solution: it took 56,114 iterations
(7261 in Phase I) to solve 61 subproblems with a total usertime of 1834.38 seconds.
The time for optimizing the subproblems was 1657.94. You can see the printout in
Table 4.

I got another solution with smac = 8000. Therefore it took 68,345 iterations to
solve 70 LP’s in a usertime of 2137 seconds (out of that time, it took 1710.45 seconds
to optimize the subproblems). With smac = 7000, it ran without ending.

These results are not very good because to solve subproblems with 10,000 variables
takes a lot of time. The number smac = 10,000 is too big for our purpose.

Our problem could be the huge number of nonoptimal variables. If that number
was relatively small, then the method behaved very well. Unfortunately, this number
is very high in our case. It starts with about 40,000 nonoptimal variables. If you
look at this in relation to 5000 columns it is a factor of 8 (in the 2a100,000 problem,
it starts with &~ 12,000 nonoptimal variables, divided by 3000 gives a factor of 4).
This suggests a change of the method such as: start with a bigger size of the sub-
problem. If the number of nonoptimal variables goes down, then reduce the size of

the subproblems you are solving.

3.2 Comprehensive Results

The best results in the aa20,000p problem were with choosing the size of the subprob-
lems around 900-3000 columns. Then I was able to solve it in about 12-19 seconds.
The aa50,000p problem lead to the best results with smac =~ 1500-5000, with a user-
time of 70-110 seconds. The results on the aal00,000p problem were with smac =
3000-4600 and needed a time of 336-400 seconds.
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You may think that smac = 6000 columns would lead to good results in the
2a200,000p test problem, but that’s not right. The results with smac > 8000 columns
weren’t very good. The time went up to 1800 seconds, about 3 CPU-hours. Maybe
that’s just because it is a hard problem to solve (think about aa6: it’s not very big,
but it’s very hard to solve). But, maybe the method is not efficient enough if there
is a very big number of nonoptimal variables at the beginning (see 3.1.6). If that
number is relatively small, the method behaves very nicely.

Compared with CPLEX or other LP-solvers, this method seems to be more effi-
cient.

Take a look at the 2al00,000p problem: CPLEX needed 3956 iterations and a
time of 531 seconds to solve it (with advanced basis!). The best solution I found was
with choosing 3000 columns. I got 4375 iterations (with the smaller subproblem) and
a time of just 336 seconds. That’s about 37% better. If you take the average solution
time between smac = 3000-4600 columns you will get the value of 395 seconds. That’s
still 26% better.

In the problem aa50,000p, the results lead to an average improvement of 15%
(smac between 1500-5000, 84.8 seconds). CPLEX needed a time of 99 seconds to
solve it (with advanced basis).

The best improvement I got was in the aa20,000p problem. If you run the algo-
rithm with smac = 1000, you will get a time of just 12.15 seconds, which is 62.5%
better than the time CPLEX needed (= 32.19 seconds). In the average case, the
improvement is still 50%.

I think that these results are encouraging to continue the research in this method.

4 Proposals to Improve the Algorithm

Looking backward to our original goal, to solve much bigger LP’s than the aa200,000p
problem, I would suggest to vary the size of the subproblem we generate.

Start with a bigger subproblem, and when the number of nonoptimal variables (=

18



positive reduced costs) decreases, then decrease the size of the subproblems as well. I
would suggest solving these big subproblems in the same way we solved the big LP’s:
to split them into-smaller subproblems.

Another possibility would be to solve a few subproblems in parallel, to do the
pricing for all of them in the big LP, and to continue with the solution which leads
to the minimum number of nonoptimal variables.

Most of the test problems were computed on a CRAY. Therefore, it’s necessary to
use the network. We had two problems: the CRAY is only available at certain times.
If your program hasn’t finished after that, all the computation you did on it was lost.
The other problem was the network. On some days it went down several times. I had
to start the same test problems over and over again. This suggests doing something
like CPLEX does, to write out the basis at certain intervals during optimization. In
this method, though, that’s much more complicated than in CPLEX. The big problem
is to start with an advanced basis, because you’ve got a lot more information to use.
You have to write/read almost every array. It would be worth it to think about this,
however.

Maybe the “circling” was a bad idea. One can try to run it without that. But, I
think that it would probably lead to an improvement if “circling” was just changed:
Instead of saving the “old” nonoptimal variables every second time, do it every time.

You could also run the program with a smaller number of restarts. The good
results of 3.1.5 encourage that. But unfortunately, I didn’t have the time to do it.

Last, but not least, it would be a big improvement to parallelize and vectorize the
algorithm. I hope that efforts to try that will be rewarded.
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