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Abstract. In this paper we develop a parallel domain decomposition method for mixed finite ele-
ment methods. This algorithm is based on a procedure first formulated by Glowinski and Wheeler for
a two subdomain problem. This present work involves extensions of the above method to an arbitrary
number of subdomains with an inner product modification and multilevel acceleration. Both Neu-
mann and Dirichlet boundary conditions are treated. Numerical experiments performed on the Intel
iPSC/860 Hypercube are presented and indicate that this approach is scalable and fairly insensitive
to variation in coefficients.
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1. Introduction. Mixed finite methods are known to be important in modeling
flow in porous media. In a mixed finite element formulation both pressure and ve-
locities are approximated simultaneously. In addition, approximating spaces may be
chosen so that mass is conserved cell by cell. Application of these methods to porous
media problems was first proposed and analyzed in [6, 7] and computational results
presented in [3].

We note that standard petroleum industrial simulators employ cell centered finite
difference methods for approximating the pressure equation. Russell and Wheeler in
[14] first showed that these difference methods are in fact the lowest order Raviart—
Thomas mixed finite element method with special numerical quadrature. A second
remark is that the approximation of the pressure equation is the most costly portion
of the numerics in a reservoir simulator. Evidence of this is easily discernible from the
petroleum engineering literature which contains a large number of papers on linear
solvers.

Because flow in porous media problems are computationally intensive, many gov-
ernment and industrial laboratories are investigating parallel algorithms for reservoir
and contaminant transport simulation on distributive memory machines like the Intel
RX, the NCUBE, and the CM-2. The benefits include both the opportunity to solve
problems cheaper and the ability to solve problems otherwise too large. Present day
simulators frequently employ grid spacings at least 200 times too large for desired ac-
curacy. Moreover, in porous media simulations many realizations are needed because
of the stochastic nature of the coefficients or heterogeneities.

Computer engineers indicate that by the end of the decade supercomputers will
be teraflop machines with thousands of processors. With this in mind we characterize
a scalable algorithm for distributed memory machines as an algorithm which requires
minimal internode communication and in which the number of iterations remains
nearly constant as the mesh decreases and the number of domains increases (scaling).

In the First International Domain Decomposition meeting held in Paris, France,
Glowinski and Wheeler [10] introduced two domain decomposition algorithms for
mixed finite elements methods. A key result in [10] was the formulation of the match-
ing conditions at the interfaces of the subdomains as variational problems defined
over trace spaces. In Method 1, fluxes were assumed to match and iterations were
performed to match pressure. This in fact appears to be more natural for mixed finite
element formulations since flux boundary conditions are essential. The interface prob-
lem arising from Method 1 was solved by a conjugate gradient algorithm resulting in
a 0(1/+v/h) number of iterations to achieve convergence.

Method 2 is the dual of Method 1; pressures are assumed to match and iterations

are performed to match fluxes. In [10] only a two domain problem was considered.



In the Third International Domain Decomposition, Glowinski, Kinton, and Wheeler
[9] defined a multilevel acceleration of Method 1. Numerical experiments carried out
on a sequential machine indicated that the number of V' cycles was practically inde-
pendent of h despite the fact that the dimension of the interface problem is growing
that 1/h.

A difficulty in the parallelization of Method 1 on a distributed memory machine
is the adjustment of the pressure solution over the subdomains. Each evaluation of
the bilinear form requires the solution of a tridiagonal system of order at most M —1,
M being the number of subdomains. The order of the linear system varies depending
on the boundary conditions imposed and the decomposition employed. In Method 2
the pressure adjustment by a constant only arises for Neumann problems, and there
is no linear system to solve.

In Section 2 we define Method 2 for arbitrary number of domains and prove the
strong ellipticity of the resulting bilinear form. We also prove that the condition
number of the bilinear form is 0(1/h). Results of numerical experiments carried out
on an Intel RX will be discussed in Section 3 using a generalization of the Raviart
Thomas spaces for domains which are unions of rectangles. Conclusions are presented

in Section 4.

2. Domain Decomposition Method for Mixed Finite Element Methods.
We consider the elliptic partial differential equation

(2.1) u=-AVp in Q,
(2.2) Viu=f in Q,
(2.3) pP=gq on I,
(2.4) u-n=g on I'*,

where € is a bounded connected subset of $2, T* NI =0, I*ul = 09, and A is
symmetric and uniformly elliptic.

For convenience we restrict our attention to two dimensional problems; extensions
to three dimensional problems are straightforward.

Let V and W be finite dimensional subspaces such that

V C H(Q, div) = {ve(L*N)?*| V- ve L)},
V* = Vn{v|v-n=0 onI"},
W C L%Q), such that div(V) C W .

Let (¢,%) = Jq ¢ dz. The mixed finite element approximation to {u,p} is given by
{U, P} € V x W satisfying

(2.5) a(U,P,v)= (A"'U,v) = (P,V-v) = [pgv-nds, veV*,
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(26) (V'uaw)=(faw)7 weWw,
(2.7) J+(U-n-g)v:-nds=0, vev.

Equations (2.5)—(2.7) are a weak formulation of (2.1)—(2.4) obtained by multiplying
(2.1) by A~'v and integrating by parts and by multiplying (2.2) by w and integrating.

Before describing the domain decomposition mixed finite element Method 2 for
M subdomains we establish some notation.

Let 2 = Uj]‘ilﬂj with ;N Q; = 0 if ¢ # j. Denote by 99Q; the boundary of ;,
Yij = v;i = 0Q; N 0Q; and n;; the normal to 7;; pointing outward from ;. We set
¥ = U;,;7ij ; we only consider those 7;; whose measure is positive. Let V; and W; be
restrictions of V and W respectively to ;.

Set

@) = [ ovds 6,9 eI¥),
Ve = V,-|n{v|v-n=00n o},
V¥ = Vin{v|v-n=0 on 9Q;NT*},
Vy = {u|pel*(y) and p=v-n;,vevV,
meas(0Q; N 0Q;) > 0,1,5=1,2,...,M},

| if meas(I') # 0
Von{z| [,2ds=0} = V,/R otherwise.

v;
Also we denote by [U - n] the jump of the flux of U € UM, V; on .
Assume that we have the following regularity assumption (R): Let Q* = U;c; Q;
for some J C {1,..., M} such that Q* is connected. We assume that if meas(8Q* N
I*) > 0 (meas(0Q2* NT*) = 0), then there exists a unique ¢ € H™¢(Q*) (¢ €
H*¢(Q*)/R) for some € > 0 satisfying

-V-AV¢ = 0 in Q*,

28) e oot
AVé-n = on n ,
z on 9N*N4.

where z € L*(0Q* N7) and [5,, 2ds = 0 if meas(9Q* NT*) = 0.
Define a; : V; x W; x V; —» R by

a;(U,P,v) = (A7'U,v),—(P,V-v);.

Proceeding as in Glowinski and Wheeler [10], we have that (2.5)—(2.7) is equivalent
to the following problem: Find {U(X), P(X), A} where U(A)|q; € V;, P(A)|q, € W;,



A € V. satisfying

. (U, PN),v) = / Av-nd

(2.9) ai(U(A), P(A), V) oo R
+/ _qv-nds, veVr,
;N
(2.10) (V-UN)w) = (f,w), weW,
(2.11) /(U(/\)-n—g)v-nds = 0, vevV,
r“
and
(2.12) /[U(/\)-n];zd.s':O, pev:.
vy

One can show that if {U(X), P()), A} satisfy (2.9)—(2.12), then {U(X), P(A)} sat-
isfy (2.5)—(2.7).

Let A € V2 and define U(X) and P(}) by (2.9)~(2.11). Setting A* = X — ],
U(M\*) = U - U()\), and P(A*) = P — P()), we see that for: =1,..., M,

2.13 (U™, POA),v) = / A*v-nds, v,
213 &UEDPEY) = [ dvends, ve
(2.14) /1: UA*)n v.nds = 0, veV,

(2.15) (V-UA"),w)i = 0, weW;,

and

(2.16) [’ [UO*) - nluds = — [, [UQ)-nlpds, pevr.

Define the bilinear form b: Vy x V. — & by

(2.17) (") = [[UO) - njuds,

where U(\*) is defined by (2.13)—(2.15); further define the linear functional L : V,x —
R by

(2.18) L) = - L [UR) - njuds.

To determine U = U(A*) + U(]) it suffices to solve the following interface problem:
Find A* € V7 such that

(2.19) (A", ) = L(u), peVr,

where {U()X*), P(A*)} satisfy (2.13)-(2.15). This procedure is known as Method 2.

We now prove the following results on the bilinear form b(-, -).
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THEOREM 2.1. The bilinear form b : Vi x V3 — R is symmetric and positive
definite if meas(I') # 0, and is positive definite over Vy /R if meas(I') = 0. The
bilinear form is strongly elliptic over the respective spaces.

Proof. We first establish the symmetry of b. We have

b(A, ) = /Q[U(A)'n]uds, pevr,

where {U(A), P(A)} are defined by (2.13)—(2.15) with A\* = X\. We define the pair
{U(u), P(1)} also by (2.13)—(2.15) for u € V7. Thus,

(UG, P, U= [ 4O n.

Summing (2.20) for ¢ = 1,..., M we obtain

M
(2.20) b m) = Y /Q ATTU(N) - U(p) de
= b(p,A),

which immediately implies b is symmetric over V) and positive semi-definite.

We now show that b is positive definite if meas(T') > 0, i.e. if b(A,A) = 0, then
A=0.

Let 2, be a domain in which meas(8Q, N f‘) > 0. Define {v¢, ¢¢} to the solution
of the elliptic partial differential equation given by

Yy = —AV¢e in Q,
Ve = 0 in Q,
(2.21) ¢ = 0 on ANT,

0 on 9N, NT*,
Ye-m =
A on 0N~.

By the regularity assumption (R) we have that ¢, € H+<(Q,). Define {4}, ¢;} €
Ve x Wy to be the mixed finite element approximation of (2.21) defined by (2.5)-
(2.7) with appropriate changes in domain definition. Applying (2.13) and noting that
U(A) = 0, we obtain

/anm(,\fds - - /n, PV -95dz=0.

Thus A =0 on 92, N 7.

We now consider an adjacent domain to Q, in which the boundary intersection
has positive measure. Call such a domain Q. Define ¢ to be the solution of the
boundary value problem (2.21) with the modification that ¢x = 0 on 8Q N dQ, N 7.
Repeating the above argument we note that A = 0 on 9Q; N 7.
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We now exhaust the number of domains and conclude that A = 0 on 4.
For the pure Neumann problem in which meas(I') = 0 we consider the following
problems:

Ye = —AV¢, in Q,
V-¢g = 0 in Q,

0 on 0Q,NT*,
{ z on 9Ny,

(2.22)

Ye-n =
where [0, 2ds = 0. We observe that

(2.23) / POV - 45 do = / Azds =0,
Q QN

for every z € V,|oq,ny- Thus A, is constant on yNI,. The result that \y = Ay = ... =
A follows by regularity assumption (R) and the assumption that € is connected. O

Examples of mixed finite element spaces satisfying the inf-sup convergence con-
dition [1] or the condition that div(V) C W can be found in [2, 8, 12, 13]. For these
spaces one can establish the following inequality:

(2.24) > aQ'A‘lU-Uds <Cih 1ty A A"'U . Udz,

where C is a positive constant and h is a mesh spacing parameter.
Assuming (2.24) we now derive bounds on the bilinear form b.

THEOREM 2.2. Letd:VyxVy — R be defined by (2.19). Then there exist positive
constants Co and Cy such that

(2.25) ColllAIP < b(A, 2) < Gl[|A|[2*

where

(2.26) A= 3 [ né;4ng> as
ig Y%

and C1 and h™1 are defined by (2.24).
Proof. We have

ALY = 3 / [U(A) - ng;]A ds

ij Yij
- Z/ AU(M) - n; ds
i 0Ny

=3 / AAY24-12U()) - n; ds
: BQin‘Y

(Zz: /39.'01 AanAni ds) (Zt: ~/89,'n7 A—lU()‘) ) U(’\) ds)

VIR 2|l | A7Y2U (M) |2y
7

1
2

IA

IA



Thus,

(2.27) BN = ¥ /Q ATIUQ) - U(N) dz

(2.28) Crh M2

IA

To prove the second half of (2.25), we first consider the case where meas(I) > 0.
Let , be a domain such that meas(dQ, NT) > 0. We set J; = {£}. We define
Jk,k = 2,... recursively by letting

(2.29) Jr = {j | meas(9Q; N 92;) > 0 for some s € Jr_1}.

We now define a set of auxilary problems. For ¢ € Jy, let {15, ¢;} be the solution to

Yi = —AV¢; in Qy,
AV ;. = 0 i Qi’
(2.30) 4 -
¥i-n; = niAm;A on 7,

¢; = 0 on 9 NQ,,

where v; = 0Q; \ 0Q2; N 9, and s € J,—; with meas(9; N 9N,) > 0. Here n; denotes
the outward normal to Q;. We assume v C |J; 7:.

Let {¢}, ¢} € Vi x W; be the mixed finite element approximation to {%;, #;} on
Q;. We have

i

(2.31) niAn;\?ds = /z/:;-n,-/\ds
i

/Q AU dude

= [ A0 (8 - v dat [ ATUR) - dudo
< CIATPUN gy il

< Gl UMWy ([ widnor® ds)% .

Thus,
M

(2.32) A < 3 [ nidni?ds < € (3, N),
: Y

and the result follows.
Estimates for Neumann boundary conditions involve minor modifications to the

above argument. Letting J; = {1} we modify the definition of V} by

(2.33) Vy = {z ev, I/ niAn;zds = 0} .
O Uy
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Thus on ; we can define a local auxiliary problem and bounds are estimated as
before. O

As a result of the above theorems and an application of theorems due to Douglas
and Douglas [4, 5], we conclude that the multilevel V-cycle method described in detail
in [9] for the interface problem (2.19) is convergent.

3. Numerical Experiments. In this section we discuss two numerical experi-
ments that demonstrate the effectiveness of multilevel acceleration, and the efficiency
of the resulting algorithm. We begin by defining the Raviart-Thomas spaces. Let
be the rectangular domain (0,1) x (0,1) and

Az:0=2z0<21<...<2ZN, =1,

Ay:0=yo<y1<...<yn, =1,
be partitions of [0, 1]. For such a partition A, define

M;(A) = {v € C([0,1]): v is a polynomial of degree <r
on each subinterval of A}.

When ¢ = —1 this is taken to be a space of discontinuous piecewise polynomial func-
tions. Let I' be the portion of the boundary of  on which Dirichlet boundary con-

ditions are imposed, and let T'* = 9Q \ I'. The Raviart-Thomas spaces are defined as
follows:

W = M7(Az) @ Mj(Ay),
Ve = [M7H (A2) ® Mg (Ay)] x [M7(Az) @ M7 (A)),
V" =V? n{v:v-n=0onTI*}.

We use the Douglas and Roberts [8] extension of the Raviart—-Thomas spaces for more
general domains.

For the purpose of our numerical experiments we will restrict our attention to
the Raviart-Thomas space of next to the lowest order (¢ = —1,7 = 1) and domains
composed of the union of rectangles. The solutions were obtained by applying multi-
grid V-cycles to the interface problem resulting from (2.19). Two conjugate residual
iterations equipped with the inner product

(3.1) (A, p) = 2/ n};An;j\p ds,
ij Yiy
were used as the smoother. This inner product induces the ||| - |||-norm defined in

(2.26). The resulting subdomain problems were solved to machine precision, a restric-

tion that could perhaps be relaxed. Iteration on the interface problem was carried out
9



until a reduction of six orders of magnitude in the relative residual was achieved. A
more complete description of the algorithm may be found in [9]. All calculations were
done on Intel iPSC/860 machines located at Oak Ridge National Labs and the Rice
Center for Research on Parallel Computation.

In our first experiment we consider potential flow in the “T-shaped” region

with boundary I' depicted in Figure 1. The flow satisfies

u = —-Vp inQ,
V-u = 0 inQ,
(32) p = 0 on Fpressurea
0 on I'yan,
un =
-1 onTIy,.

The region is partitioned into 16 subdomains, each assigned to a separate processor.
The velocities for the solution of the test problem are shown in Figure 2. The re-
sulting interface problem is solved using multigrid V-cycles with various numbers of
levels. Solution of the interface problem via conjugate gradients equipped with the
inner product (3.1) corresponds to the number of levels equal to one. The number of
conjugate gradient iterations in this case were 76 for the smaller problem and 108 for
the larger one. Table 1 summarizes our results.

Number of Nx = 48 | Number of Nx = 96 | Number of

Levels Time (sec) V-cycles || Time (sec) V-cycles

1 24 - 160 -

2 18 4 96 4

3 11 4 53 4

4 - - 55 4
TABLE 1

Exzecution times versus number of levels in V-cycle for “T-shaped” region

From this experiment we see that given a sufficient number of levels, the multilevel
scheme improves run time by a factor of two to three over the solution by conjugate
gradients applied the interface problem. A portion of the run time comes from com-
puting the exact solution on the coarsest grid. By increasing the number of levels, we
decrease the size of that problem and see a corresponding decrease in the run time
provided that we do not increase the number of V-cycles required for convergence. We
note that the number of V-cycles are independent of the problem size in this example.
The next experiment will further demonstrate that this is characteristic of our method
of solution.

For the second test problem we consider the solution of a variable coefficient
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elliptic Dirichlet problem posed on the unit square S. The problem is
u = —aVp in S,

(3.3) V-u = f in S,
p = 0 ondSs.

In the above problem f is chosen such that the solution is

u(z,y)= Y, (sin(wnw)sin(wny) - (;T)?) .

n=1,3,5

We consider three functions for a(z,y):

a(z,y) = 1,
1
o(z,9) 1+ 100(z2 + y2)’
a(z,v) 100 ifz < 0.5
Y 1 ifz > 0.5.

For each choice of a, experiments were run varying spatial discretization and the
decomposition into subdomains to determine the efficiency of this algorithm. For a
given decomposition, the number of levels used in the V-cycle was chosen such that the
smallest dimension in a subdomain on the coarsest grid was 2 grid blocks. Tables 2-4

summarize our results. For the 1x1 decomposition, the number of conjugate gradient
iterations are reported.

Decomposition

Discre-
tization 1x1 1x2 2x2 2x4 4x4 4x8 8x8
16x16 1.7(27) | 10.5(3) 5.4(3) 4.2(4) 1.5(3) | 0.9(1) | 0.5(1)
32x32 7.4(31) | 58.6(4) | 28.9(4) | 14.8(4) 7.4(4) | 5.2(4) | 3.0(4)
64x64 36.5(41) | 292.8(4) | 130.6(4) | 62.7(4) | 29.3(4) | 15.8(4) | 8.8(4)

128x128 | 235.6(56)! - | 672.6(4) | 299.9(4) | 127.3(4) | 59.2(4) | 30.9(4)
TABLE 2

Ezecution times and Number of V-cycles for a(z,y) =1

Two types of considerations effect the efficiency of Method 2. The primary consid-
erations involve the extra work required to solve (2.5)—(2.7) by iteration on an interface
problem (2.19) as compared to a method that is direct in the sense of not introducing
such a series of subdomain problems. The secondary considerations are classical is-

sues of processor utilization, communication overhead, and duplicated work. The 1x1

! Execution time estimated based on comparison times for runs on sequential machine
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Decomposition

Discre-
tization 1x1 1x2 2x2 2x4 4x4 4x8 8x8

16x16 | 2.0(24) | 9.8(3)| 5.23)| 4.3(4)| 27(4)| 1.5(1)| 1.4(1)
32x32 | 8.5(28) | 52.4(4) | 26.1(4) | 14.3(4) | 8.0(4)| 7.2(4)| 6.3(4)
64x64 | 36.5(39) | 252.5(4) | 116.7(4) | 57.5(4) | 29.2(4) | 17.3(4) | 11.9(4)
128x128 | 237.4(56)? - | 594.3(4) | 275.5(4) | 126.1(4) | 60.1(4) | 33.2(4)

TABLE 3
Ezecution times and Number of V-cycles for a(z,y) = 1/(1 4+ 100(z? + y?))

Decomposition

Discre-
tization 1x1 1x2 2x2 2x4 4x4 4x8 8x8

16x16 | 2.0(34) | 12.6(3) | 8.2(3)| 5.04)| 2.6(4)| 1.1(1)| 0.8(1)
32x32 | 8.6(39) | 70.8(4) | 34.4(4)| 17.6(4)| 9.1(4)| 7.0(4)| 5.0(4)
64x64 | 42.2(50) | 347.4(4) | 156.5(4) | 72.2(4) | 35.3(4) | 19.5(4) | 11.7(4)
128x128 | 249.4(70)! - | 808.0(4) | 352.6(4) | 155.9(4) | 72.1(4) | 37.4(4)

TABLE 4
Ezecution times and Number of V-cycles for a(z,y) = 100 ifz > 0.5, 1 if z > 0.5

decomposition corresponds to solving the global problem without decomposition. By
comparing the amount of work required to solve this problem to the work required to
solve the other decompositions, we determine the efficiency of Method 2.

Processor utilization measurements show that the parallel implementation of this
algorithm is dominated by computation for all decompositions where the subdomains
are larger than 2x2 grid blocks. Further, the code has minimal duplication of work
amongst processors. Hence, issues of efficiency and speedup are actually issues of how
the multilevel algorithm for the solution of (2.19) behaves as a function of decompo-
sition and problem size. For a parallel algorithm dominated by computation with no

duplicated work, the amount of equivalent sequential work Wjseq is approximately
(3.4) Weeq = NTN .

where N is the number of processors and T is the execution time using N processors.
Using this measure of total work, we observe that solving (3.3) by means of the
interface problem (2.19) increases the total amount of work by about a factor of 10. For
this reason, small decompositions run slower than the sequential 1x1 decomposition. It
is important to note that the algorithm does change substantially with decomposition

and problem size. For example, the number of interfacial unknowns changes as well as
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the number of levels in the V-cycle. In particular, if the subdomains are too small, then
acceleration due to a multilevel scheme is limited as shown in the first test problem.
The changes in the algorithm also explain the superlinear speedups obtained in the
test problem with a discontinuous coefficient.

Several speedup curves have been suggested for evaluating the scaling properties of

a parallel algorithm. See for example Worley[15] and the references contained therein.
The classical speedup S of an algorithm is
(3.5) S(N) = %
The curve resulting from plotting speedup versus the number of processors for a prob-
lem of fixed size is the classical speedup curve. Gustafson, et al. [11] propose examining
a scaled speedup curve where the problem size increases with the number of proces-
sors. In view of the comments made in the introduction, both speedup curves are of
significance. Figures 3 and 4 display both speedup curves for (3.3).

Another important observation from Tables 2—4 is the independence in the number
of V-cycles for a wide range of discretizations and variable coefficients. This indepen-
dence is a key reason why the algorithm is very scalable. As subdomain problems
become too small, however, the amount of exploitable multilevel speedup decreases,
and less significantly, the compute to communication ratio decreases. The experiments
suggest that for our choice of finite elements and method of solution that there is both
sufficient computational work and multilevel acceleration to provide almost perfect
linear speedup if the subdomains (and hence the number of processors) are chosen
such that they contain at least 16x16 grid blocks, a minimal restriction in view of the

comments made in the introduction.

4. Conclusions. We have defined and analyzed a method for solving elliptic
problems via domain decomposition and incorporating multilevel acceleration. A proof
of the condition number of the resulting interface problem was given. Numerical ex-
periments on an Intel iPSC/860 have shown the resulting algorithm to be scalable due
to an insensitivity in the number of V-cycles required for convergence to problem size
and variation in coefficients. Since the need to solve larger problems is an important
issue in many applications including reservior modeling, the algorithm is particularly
promising as demonstrated in the speedup curves. Furthermore, we are encouraged
to proceed to a Method 2 implementation in 3-D.
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FIG. 1. Schematic of “T-shaped” domain

F1G. 2. Velocity profile of first test problem
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F1G. 3. Classical speedup
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