Increasing the Granularity of
Parallelism and Reducing Contention
in Automatic Differentiation

Brad N. Karp
Christian H. Bischof

CRPC-TR90075
November, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439-4801

ANL/MCS-TM-142

Increasing the Granularity of Parallelism
and Reducing Contention in Automatic Differentiation*

by

Brad N. Karp** and Christian H. Bischof

Mathematics and Computer Science Division
Technical Memorandum No. 142

November 1990

*This work was supported in part by the Applied Mathematical Sciences subprogram of the Office
of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

**Participant in the Summer 1990 Student Research Participation Program. This program is coor-
dinated by the Division of Educational Programs.

Contents

Abstract

1

Origins, Introduction, and Motivation

2 The Tape and the Graph
3 Hoisting

4 Splitting

5 Results

6 Conclusions
Acknowledgments

References

iii

10

10

10

e

Increasing the Granularity of Parallelism and Reducing
Contention in Automatic Differentiation

Brad N. Karp and Christian H. Bischof

Abstract

The automatic differentiation package ADOL-C of Griewank and Juedes, traces the
computation of a function whose derivative is to be computed, and then subsequently
propagates adjoint values along these traced paths according to the chain rule. While
a sequential implementation of the reverse mode can utilize this trace by traversing it
in reverse order, a parallel implementation must build the entire computational graph,
as different processors will each simultaneously be working on different sections of the
trace. In a sequential implementation, the linearized trace inherently obeys the depen-
dencies of the function evaluation. In a parallel implementation, however, there must
be a mechanism to determine whether a node’s dependencies have been resolved yet,
meaning that the node’s adjoint value is computable. A node in the graph must rep-
resent a quantity of arithmetic operations large enough for a processor to do enough
computation before it must communicate the result to another processor, but small
enough for there to be enough nodes in the graph to allow many processors to work
simultaneously. Sinks are bottlenecks for efficient parallel computation, as their many
dependencies mean that many processors will contend for them simultaneously. These
two factors are both familiar problems in parallel computation; the first is an issue of
granularity, while the second is an issue of contention. As a first step toward achieving
an efficient parallel implementation, we present a system for construction of a com-
putational graph from ADOL-C’s computational trace, as well as two transformations
for this graph, hoisting and splitting, which improve its computational granularity and
reduce contention, respectively.

1 Origins, Introduction, and Motivation

Griewank showed in 1988 [1] that when the reverse mode of automatic differentiation is
used on a sequential processor, “the evaluation of a gradient requires never more than five
times the effort of evaluating the underlying function by itself.” This observation led to
interest in the implementation of an automatic differentiation package that would produce
gradients for existing coded functions (ideally in C or Fortran) with minimal modifications
to these preexisting functions. Juedes and Griewank [2] soon thereafter produced ADOL-
C, a sequential implementation of the reverse mode of automatic differentiation using the
operator overloading features of C++. Their package overloads all standard binary arith-
metic operators, assignment, and other commonly used univariate mathematical functions
and produces a complete record of each individual operation carried out in the course of a
function’s computation, via this overloading mechanism, called a tape. This tape is then
used on a sequential processor to propagate adjoint values backward through the function’s
computation, in the end producing a gradient value.

A logical next step in the efficient implementation of automatic differentiation is the
creation of a system that carries out the reverse mode on a parallel processor. Indeed, Juedes

and Griewank [2] produced just such an implementation for the Sequent Symmetry. Their
parallel implementation generates a directed acyclic graph of intermediate values along the
course of the function’s evaluation, whose edges represent the dependencies of these values
on one another. The Sequent architecture supports local memory access for each individual
processor as well as access to a shared memory pool by each processor. This shared memory
has a flat hierarchy and must be accessed via locks in order to ensure mutual exclusion of
access by processors to a single memory location. The evaluation of this dependency graph
is a fine-grained problem, as there is no obvious partitioning method for the division of
the evaluation into equal-sized subproblems for distribution among the processors. Their
strategy for allocation of work to processors is simply to begin traversing the graph at
the dependent variable, placing nodes whose dependencies have all been resolved onto an
evaluation queue. When a processor needs work, it attempts to “take” a node from this
queue for itself. A major concern when using such a system is the amount of overhead
generated by locking shared-memory locations, especially when there is heavy contention
among processors for a single such location. Juedes and Griewank attempt to circumvent
this potential difficulty by using a two-tiered queue system: each processor has its own
private queue in local memory, and every pair of processors shares a common queue in
shared memory. When a processor resolves a node’s last dependency, it adds this node to
its own local queue, unless its local queue is full, in which case it places the node on its
shared queue, which is of variable size. Similarly, when a processor’s local queue is empty, it
attempts to find work in its shared queue and, if necessary, accesses shared queues of other
pairs of processors to find work if its own shared queue is empty. Certainly, this scheme
reduces shared-memory access from the amount that a more naive single shared-memory
queue implementation would use. However, it is clear that this implementation still employs
extremely fine-grained parallelism, as a queue access (either in local or, sometimes, in shared
memory, incurring an “expensive” lock operation) is made for each individual arithmetic
operation.

One would hope that some sort of clustering of operations into a single “package” to be
computed in its entirety by the same processor could improve the efficiency of automatic
differentiation in parallel. This hope is justified, as long as the choices of which operations
to cluster together are made intelligently. To this end, consider the following fragment of a

function being differentiated:
sin(cos(tan(v/z + ¥))).

It is noteworthy that the graph representation of this calculation will have single edges (or
links) between nodes, with the exception that the bottom + will have two links, emanating
to z and y. (See Figure 1.) Because of the single links connecting this fragment, parallelism
can contribute no benefits whatsoever to the fragment’s evaluation; no node will be ready
to be evaluated in this chain until its one parent has been evaluated. Yet, in Juedes and
Griewank’s implementation, these nodes will each be fetched individually from evaluation
queues. Here we have the motivation for our first graph transformation, hoisting, which
attempts to take advantage of the above mentioned construct to improve the granularity of
the computation.

It is also noteworthy that the result of a single arithmetic operation can be used infinitely
many other places later in the computation. Consider the simple case of z = y + 2. The
code for the function being differentiated may use z arbitrarily often thereafter, which
in turn means that the node representing z in the graph can have arbitrarily many links
emanating “upward” to other nodes. (See Figure 2.) Thus, in the reverse mode of automatic

-

©
©60 O

(a) (b)

Figure 3: In (a), y + 5 is inefficiently represented as + with two children, y and 5; in (b),
generated by our implementation, y + 5 is represented as +5 with one child, y.

this scheme generates an acyclic graph from the cyclic graph that ADOL-C’s live variable
analysis produces. (For example, when ADOL-C stores the result of a z += 5 in the same
array location where the original value for z was stored, we have the array location’s value
depending on its own old value-a cycle. When a location is reused, this graph-building
scheme doesn’t deallocate the node referenced by the old pointer in the array location;
it simply overwrites the pointer, leaving the old node intact. Thus, by creating separate
nodes in the graph for each time an array location was reused by ADOL-C, these cycles are
eliminated.) It is important that the graph remain acyclic if it is to be suitable for parallel
evaluation. Also, the graph complexity is reduced somewhat during the graph’s construction
by including constants used as operands inside of the operation’s node itself, rather than
creating a separate node containing the constant and linking it to the operation. In other
words, a construct such as y + 5 will be represented in the graph as a node containing the
preexisting value of y linked upward to a node containing the information +5 rather than
linked upward to a node containing the information + which would have 5 as as second
child. (See Figure 3.)

As different opcodes have varying parameter types and counts, the tape comprises
records of varying C structures. The different structures used in the tape can be found
in template.h. In an effort to keep the code complexity of routines that work on the
graph to a minimum, a single data type for nodes, regardless of their opcodes, was adopted.
This single type node contains a union to maximize space efficiency, as certain quantities
associated with one opcode are mutually exclusive of other quantities associated with other
opcodes. (A binary operator that involves a constant must store a constant and a pointer to
the node containing the other operand, whereas a binary operator that involves no constants
must store two pointers to nodes containing operands, for example.) In actuality, there is
a two-tiered organization. When the graph is initially built, each node created consists of
a gennode half and a node half. These graph data structures can be found in graph.h.

As a footnote to this description of the graph’s construction from the tape, it should
be mentioned that the error condition in which a tape generated by ADOL-C references
a location in the live variable array before any value has been assigned to the location
is handled by the graph construction code. The uninitialized location is set to be an
assignment opcode whose value is one, so that a segmentation violation will not occur
when the location is referenced, and an error message containing the exact location of the
faulty reference is printed. This error trapping allows code with improper or insufficient
variable initializations to successfully build a graph for test purposes, and it also gives the
programmer of the code being differentiated a precise indication of where the fault in the
code lies.

-

3 Hoisting

Now that the computational graph has been generated, we wish to put this graph into a
form where it is most readily suitable for parallel processing. Our first step toward this goal
is the elimination of the chain construct pictured in Figure 1. Ideally, such chains should
be coalesced into single, encapsulated units, so that a processor will be assigned the entire
length of the sequential chain to compute rather than the first node on the chain’s end.
Hoisting accomplishes exactly this task.

Perhaps the most serious implication of hoisting for the graph and its evaluation is the
introduction of a second data type for nodes in the graph; homogeneity of the graph is
lost. After hoisting, the graph contains regular nodes, which encode single operations as
before, and supernodes, which encode singly linked chains of operations (with either a leaf
or a binary operation at the chain’s end). From the standpoint of data type, three data
types make up a hoisted graph. The first is gennode. A gennode contains all information
that must be stored both in nodes and in supernodes, as well as identification of the node
type. The second and third are node and snode. A gennode is associated with either a
node or an snode. A node contains the data specific to a regular node, while an snode
contains data specific to a supernode. Thus, an snode encodes several operations that were
originally in a singly linked chain, while a node encodes only a single operation. A gennode
can be thought of as a sort of “wrapper” for the two different node types that occur in the
hoisted graph. (Once again, the details of the data structures can be found in graph.h.)

As mentioned previously, the graph generated initially from the tape consists only of
nodes, with no supernodes. This fact simplifies the work to be done in the hoisting process,
as it guarantees that during a top-down traversal of the graph, any node encountered
that has not yet been visited will not be a supernode, as long as supernodes are ezpanded
mazimally when first created. In other words, when two nodes can be collapsed into a
supernode, the algorithm for collapsing the two should not stop at just those two unless
necessary; rather, it should attempt to collapse as many nodes as possible (as determined
by the criterion below) in a single sweep. The algorithm for hoisting works just this way;
it creates the largest supernodes possible in a depth-first fashion when it discovers that a
supernode can be created.

The formal rule for determining the “hoistability” of a node is as follows:

A child c can be hoisted into a node n if n has only one link downward, which
points to ¢, and ¢ has only one link upward, which points to n.

Note that this rule does not specify the number of children that ¢ may have; a supernode
may have arbitrarily many parents and either zero or two children. (Note that a supernode
cannot have one child except during the time while it is being built, because supernodes
are maximally expanded when built.) Also note that the current implementation allows for
arbitrarily large supernodes, (i.e., supernodes that encode arbitrarily many operations), as
the data structure used to store operations and operands inside a supernode is a dynamically
allocated linked list. It might be worthwhile in the future to implement hoisting where
a supernode would have statically allocated storage for operations and operands, fixing
a limit on the number of operations contained inside one supernode. Such a statically
allocated supernode data structure would be simpler than the current implementation’s
dynamically allocated data structure. However, further information about the numbers
of nodes coalesced into single supernodes must be obtained before this question can be
evaluated properly.

loop

pop a node n off of traversal stack
u = uplinks(n)
if u > threshold

n2 =

n

r = u modulo threshold
q = (u integer divide threshold) - 1

temp

= uplink ptrs of n2 after first threshold uplink ptrs

remove all but first threshold uplink pointers from n2
while q > 0 '

ifr

a = new += 0 node, marked as visited

attach a above n2

move the first threshold uplink ptrs from temp to a
n2 = a

>0

a = new += 0 node, marked as visited

attach a above n2

move all remaining uplink pointers in temp to a

push n’s non-visited children onto traversal stack
mark n’s non-visited children as visited
until traversal stack empty

Figure 6: The splitting algorithm

problem employing nonlinear least squares methods, yielded more encouraging results. The
computational graph we produced from ADOL-C’s tape of this function was 108,686 nodes
in size when no transformations were applied to it. When hoisting alone was applied to this
graph, the resulting graph was only 67,242 nodes in size, indicating that a great many nodes
were collapsed into supernodes—a signnificant improvement in granularity. When splitting
and hoisting were both applied to the graph, the resulting graph contained 70,896 nodes.
Thus, for this particular test function, hoisting and splitting have a profound effect on the
graph’s organization. Perhaps the most important observation to be made from these two
examples is that the effectiveness of our transformations is rather problem dependent; the
graph of the Helmholtz energy function was not changed nearly as much as that of the
shallow water test problem by our transformations.

6 Conclusions

We have presented a method for generating a computational graph from the tape produced
by ADOL-C, and two transformations of this graph to improve its suitability for parallel
evaluation: by improving its granularity (hoisting), and by eliminating one-node hot spots of
contention (splitting). Our results are encouraging but indicate that the potential benefits
reaped from these transformations are problem dependent.

While hoisting and splitting may not always have a profound effect on a graph’s size and
structure (as in the Helmholtz energy function example), they can make a great difference
(as in the shallow water problem), and the resulting graph is likely to provide a useful base
for the construction of an efficient parallel implementation of automatic differentiation.

Acknowledgments

BK is indebted to Chris Bischof, Andreas Griewank, David Juedes, and Jay Srinivasan for
their friendly assistance and support (in both technical and social capacities) during his
stay at Argonne.

References

[1] A. Griewank, “On Automatic Differentiation,” in Mathematical Programming: Recent
Developments and Applications, ed. M. Iri and K. Tanabe, KTK Scientific/Kluwer Aca-
demic Publishers, 1989.

[2] D. Juedes and A. Griewank (1990). Implementing Automatic Differentiation Efficiently,
Mathematics and Computer Science Division Technical Report ANL/MCS-TM-140, Ar-
gonne National Laboratory, Argonne, Illinois.

10

g}b—@—@—a—@

Figure 1: The graph representation of sin(cos(tan(,/z ¥ y)))

VY

ONO,

Figure 2: A graph where z is likely to be a candidate for contention

differentiation, such a node with a high upward branching factor will be a “hot spot”
of contention among processors, as the probability is high that several processors on the
other sides of these many upward links will simultaneously attempt to access the node to
determine whether it is ready to be evaluated. Here we have the motivation for our second
graph transformation, splitting, which attempts to restructure such nodes with high upward
branching factors so that contention for them will be reduced.

The starting point for the work presented here is the tape of a function evaluation
produced by ADOL-C, Juedes and Griewank’s automatic differentiation package.

2 The Tape and the Graph

Before the trace produced by ADOL-C can be transformed into a form more suitable for
parallel evaluation, the more basic transformation from the tape into the dependency graph
must be accomplished. This transformation is quite simple, as the tape produced by ADOL-
C is merely a linearization of the graph in question.

ADOL-C stores all values generated during the course of a computation in an array.
All overloaded variables in the user’s ADOL-C program are assigned array locations by
ADOL-C, and results of overloaded arithmetic operations are also assigned array locations
by ADOL-C. ADOL-C performs live variable analysis when managing this array, meaning
that when an array location’s value will no longer be used for further computations (this
situation occurs when an overloaded variable is destructed in the user’s ADOL-C program,
for instance), it will reuse this array location for a newly generated value in an effort to keep
the number of array locations used at any given time to a minimum. (This reuse includes
the trivial cases of += and other such overwriting operators; z += y will be stored in the
same array location as the original value of z.) When ADOL-C places a value into the
array, it writes out a record onto the tape detailing the information about the operation
that generated the value. Each record on the tape thus represents a single operation and
contains the operation code (opcode) (each arithmetic operation overloaded by ADOL-C
has a symbolic integer constant associated with it for this purpose), the array subscript
where the operation’s result is to be stored, and the array subscript(s) of the operation’s
operand(s). (All ADOL-C operators are either unary or binary, so each record will contain
either one or two operand locations.) The very beginning of the tape contains the tape’s
parameters stored in ASCII format, including the buffer size used to create the tape; the
maximum number of live variables simultaneously in use (needed to allocate storage as
simply as possible when reading the tape to build the graph); and the numbers of records
stored on the tape, independent variables, and dependent variables.

Thus, the procedure used to build the dependency graph from the tape is to read the
tape’s parameters and then read each record from the tape. An array of pointers to nodes,
the size of the maximum number of live variables, is allocated. This array serves as an
analog to ADOL-C’s intermediate value storage array. When a record is read from the
tape, a node is allocated and initialized to contain the record’s opcode. The pointer to this
node is stored in the location of the array where the “result” of the operation is located. This
new node is then connected to the nodes on which it is built, by storing the pointers located
in the pointer array at the locations specified by the operand indices of the tape record in
it. Similarly, the nodes on which the new node was built are updated to contain pointers to
the new node. (The edges of the graph are all bidirectional.) This process repeats until the
entire graph has been constructed, when each tape record has been processed. Note that

loop
pop a node n off of the traversal stack
¢ = child(n)
if n has one child
while ¢ has one parent
n = supernode containing n and ¢ together
¢ = child(n)
if n has more than one child or no children
break from while
push n’s non-visited children onto traversal stack
mark n’s non-visited children as visited
until traversal stack empty

Figure 4: The hoisting algorithm

The transformation is implemented as a depth-first traversal of the computational graph.
Each node in the graph has a visited flag in its gennode, and all nodes are marked as not
having been visited at the start of the traversal. The root of the computational graph is
pushed onto the traversal stack, and then the algorithm in Figure 3 is executed (after which
the entire graph has been traversed) When this loop terminates, the hoisting process has
been completed. The code for hoisting can be found in transform.c.

4 Splitting

While hoisting improves the granularity of the graph evaluation problem, splitting reduces
the likelihood of contention during the graph’s evaluation. As stated earlier, when the
result of an arithmetic operation is used later in many places in the computation, the node
that encodes this particular operation will have an extremely high upward branching factor.
Splitting, as its name suggests, breaks a node of a high upward branching factor into several
nodes. A threshold for the maximum number of upward links of a node is selected, and
any node that has more than this number of upward links is split into several nodes, each
with an upward branching factor equal to or less than this maximum. For an example of
this simple transformation, see Figure 5. Of paramount importance is that the new nodes
produced by the splitting process be computationally equivalent to the original node with
a high upward branching factor. The opcode and operand of the “dummy” nodes created
in the splitting process therefore encode += 0. Note that the minimum number of nodes
needed to meet the maximum branching factor constraint will be created; if the original
node is not evenly divisible by the maximum branching factor, then all nodes created will be
of maximum branching factor except for one, which will have the remainder of the upward
links; and if the original node is evenly divisible by the maximum branching factor, all nodes
created will be of maximum branching factor. Note also that both nodes and supernodes
alike can be split in this fashion; the new nodes produced are not dependent on the type of
the node being split.

Like hoisting, splitting is implemented as a depth-first traversal of the computational
graph, using the visited flag in gennodes to prevent repeated processing of the same node,
as it is possible to reach the same node from more than one upward path in a directed acyclic

NN

() ®)

Figure 5: Assuming the maximum branching factor selected is two, we have a node that
exceeds this maximum in (a), and its split equivalent in (b).

graph. Note that the same visited flag is used for all graph traversals, so that space is
not wasted in each node for separate flags. It is possible to reuse this same flag because all
graph traversals will have reversed the flag from its previous value in all nodes of the graph
when they have completed. Since all flags in the graph initially have the same value, the
value of the flag in the root node at the start of the traversal can be taken to mean, for
the current traversal, that a node has not been visited. The change in a flag’s value, rather
than its absolute value, is all that is significant. (See the polarity variable in transform.c
for the implementation of this single flag for multiple traversals.) Splitting first pushes the
root of the computational graph onto the traversal stack and then executes the algorithm in
Figure 4 (threshold below denotes an integer that is the maximum number of permissible
upward links for a node to have): When this loop terminates, the splitting transformation
has been completed. The code for splitting can be found in transform.c.

5 Results

The statistics on graph size obtained after performing hoisting and splitting on computa-
tional graphs from two real automatic differentiation problems are encouraging. The first
problem on which we tested the transformations was the Helmholtz energy function [2],
[1], previously used by Juedes and Griewank to test their sequential and parallel automatic
differentiation implementations. The computational graph generated from ADOL-C’s tape
trace of a one-hundred-variable execution of the Helmholtz energy function was 21,115
nodes in size without application of our transformations. After hoisting was applied to this
graph, without splitting, the graph was 21,010 nodes in size, indicating that 105 nodes were
collapsed into supernodes. When only splitting, and no hoisting, was applied to the graph,
the resulting graph contained 22,125 nodes. Lastly, when both splitting and hoisting were
applied to the graph, the graph that resulted contained 22,020 nodes. While not necessarily
striking in any respect, the results from this test function indicate that these two trans-
formations can produce a graph more suitable for parallel evaluation without a substantial
increase in the graph’s size.

The second function on which we tested the transformations, a large shallow water test

