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Abstract: A domain decomposition procedure for solving parabolic equations in
one and two space dimensions is presented, extending earlier work by the authors and
T. F. Dupont [1]. The underlying discretization is Galerkin finite elements. In this
procedure, subdomain interface data are updated using an explicit procedure in one
dimension, and an “implicit in y, explicit in z” procedure in two dimensions. This
leads to a time step constraint involving the interface discretization parameter. We
concentrate on continuous, piecewise linear and bilinear approximating spaces, and in
two dimensions restrict our attention to rectangular elements. The subdomains are
nonoverlapping intervals in one dimension, and nonoverlapping strips in two dimen-
sions. A priori error estimates in a semi-discrete L*°(L?) norm are derived, which
demonstrate that the error is of higher order in the interface discretization parameter,
which diminishes the severity of the time step constraint.
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1 Introduction

With the advent of parallel computers, that is, computers with many processors work-
ing simultaneously, substantial increases in computational efficiency in the numerical
solution of partial differential equations can, in principle, be obtained by applying
algorithms which exploit multi-processor capability. A natural way to solve problems
in parallel is to employ domain decomposition. In such an approach, one divides the
domain over which the problem is defined into subdomains, and then solves subdo-
main problems simultaneously. The procedures studied here involve defining values
on the subdomain boundaries, and using these values to calculate subdomain solu-
tions, which, when pieced together, provide a reasonable approximation to the true
solution.

In [1], we have analyzed a finite difference method which utilizes domain decom-
position to solve the heat equation. Here, we intend to demonstrate that similar
procedures can be applied to finite element approximation of more general parabolic
equations. Our attention is focused on using continuous, piecewise linear approxi-
mating spaces and nonoverlapping intervals in one dimension, and rectangular mesh,
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tensor product of continuous piecewise linear approximating spaces, and nonoverlap-
ping strips in two space dimensions.

The rest of the paper is organized as follows. In Section 2, we establish some
notation. In Section 3, we describe the finite element domain decomposition algorithm
for the one dimensional heat equation, and derive an error estimate in a semi-discrete
L>(L?) norm. We verify that, similar to the discussion in [1] on the finite difference
approximation, the error introduced by approximating the solution at the subdomain
interfaces enters the estimates as a higher-order term, and thus does not substantially
affect the overall rate of convergence. In Section 4, we describe a generalization of
this method to treat equations with variable coefficients in two space dimensions.
Finally, in Section 5, we present numerical results obtained on a multi-processor,
shared memory computer.

2 Definition of Norms

Let Q denote a spatial domain in R%, d = 1 or 2. Denote by H™(Q) and W™(Q)
the standard Sobolev spaces on , with norms || - ||, and || - ||co,m, respectively. Let
L?(Q), p = 2, 00, denote the standard Banach spaces, with ||-|| denoting the L? norm,
| * |loo the L™ norm. Finally, denote by (-,-) the L? inner product on .

Let [a,b] C [0,T] denote a time interval, X = X(Q) a Banach or Sobolev space.
To incorporate time dependence, we use the notation LP(a,b; X) and || - l|L2(a,b:X)
to denote the space and norm, respectively, of X-valued functions f with the map
t — ||f(-,t)||x belonging to LP(a,b). If [a,b] = [0,T], we simplify our notation and
write LP(X) for L?(0,T; X).

Finally, let At = T/M for some positive integer M, t" = nAt,n =0,..., M, and
fr=f@).

3 One-space-dimensional Domain Decomposition

Let u(z,t) be the solution of the heat equation:

2 _Ti-0, ze(01) teT), (3.1)
u(z,0) = u%(z), z € (0,1), (3.2)
u(0,t) = u(1,t) =0, te (0,T]. (3.3)

We now consider a finite element, domain decomposition algorithm for the approxi-
mation of u.

3.1 Basic scheme for two subdomains

We first consider dividing (0, 1) into two subdomains, (0,z) and (Z,1).



Let
0:0=x0<1<...<TNp1 =1 (3.4)

be a partition of (0,1) into intervals of length h; = Tiy1—Ti,t=0,...,N. Assume
that Z = z for some k, 1 < k < N. Related to 7 we define a parameter H > 0
satisfying H < min(Z,1 — z), and we assume 7z — H and # + H are points of the
partition 6. Let At, t*, and M be defined as in Section 2. For functions f defined at
(z,t) for all z and ¢, let f* = f(z;,t"), and let

n _ fn-1
o= 5

Let M = M(6) C H'(0,1) denote the space of functions which are continuous on
[0,1], linear on each interval (z;, z;4,), and satisfy the boundary condition at z = 0

and z = 1. A basis for this space is the set of “hat” functions {vy, ..., vn}, given by
st iy <z <,
vi(eg) = 22, 2 <z <z, (3.5)
0, otherwise.

Define spaces My, Mpg, and M, corresponding to the left and right subdomains
and the interface, as follows:

M = {v € M| v(z) =0 for z > 7}, (3.6)
Mp={ve M| v(z) =0 for z < 7}, (3.7)

and
Mi={ve M| v(z)=0forz < z4_; and z > Tki1}- (3.8)

Note that M = M & Mgr @ M, is the direct sum of these three spaces; for any
function W € M, we have W = W, + Wx + Wi, where

k-1
Wi(z) = 3 Wivi(z) € My, (3.9)
i=1
Wa(e) = 3 Wine) € M, (3.10)
i=k+1
and
W[(a:) = kak(m) € M. (3.11)

We also define an “interface function” w; € M by

ﬂw, S (5: - H’i],
wi(z) =

2 (2,24 H), (3.12)

0, otherwise,



and define M§ C M by
¢ = {w| w = aw|(z) for some a € R}. (3.13)
For any function g defined at z, let § € M$ be given by
§(z) = g(2)wi(z). (3.14)

Our domain decomposition approximation U™ to u™ = u(t") is a function in M
determined by the following procedure. First, we approximate the initial condition
0
u’(z) by

U° = mu®, (3.15)
where mu(t) € M is the elliptic projection of u, defined by
((Wu("t) - u(-,t))z,v,) =0, veM, te [07T]° (3.16)

In this simple case, 7u interpolates u at the knots z;,7 = 0,..., N + 1. Given U™(z),
we first calculate the interface value Upt! = U™(z) by

(8,0 | w) + (Ur,w,) =0, w € Ms, (3.17)

where (-, -) is the trapezoidal rule, or “mass lumped,” approximation to (-,-); that
is, for § and w in Mg,

(G, w) = GrwrH. (3.18)

Note that (3.17) determines Up*! by forward differencing in time, thus Up*'(z) is
known.
Next, we determine U}*! and UR*! by

(UL, v) + (UL*)s, v2) = =(QUF*,v) = (UF™)asvz), v € My,  (3.19)
and
(B:UR™,v) + (Up)zyvz) = —(QUF,0) — (UFY)z,v2), v E Mg, (3.20)
Note that (3.19) and (3.20) decouple, and can be solved in parallel. Finally,
Utl(z) = Ut (z) + URt'(z) + U7t (). (3.21)

Since (3.17) is explicit in time, one might expect a stability time step constraint
involving H. In fact, a stability analysis reveals that the constraint

At < H?/2 (3.22)

must hold. However, no constraint involving the k;’s is necessary.
We now prove an L? error estimate for the procedure (3.16)-(3.20).
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Theorem 1 Let At and H satisfy (3.22), and assume the ezact solution u is such
that ||ug||L2(wz) and ||ug||r2(z=) are bounded. Then

max ||u” = U"|| < C(At + h? + H?), (3.23)
0<n<M

where h = max; h;, and C is a constant which depends on the smoothness of u but
not on h, H, or At.

Proof of Theorem 1: We use a variation of the standard argument first given in [5].
We compare our approximate solution U with the elliptic projection Tu € M given
by (3.16), and then apply the triangle inequality. Below, C will represent a generic
constant, independent of A and At, and € will denote a generic small constant, also
independent of kA and At.

The following are well known approximation results for u — 7u [2]:

l(rw — w)(-, ) < Clu(-, t)]|2A?, (3.24)

[[(rue = we) (-, )] < Cllue(-, t)||2A2 (3.25)
Moreover, as remarked earlier, at a point z; € §,
(mu — u)(zj,t) =0, (3.26)
and
(rus — ug)(zj,t) = 0. (3.27)

We note that, by (3.16), and integration by parts in (3.1),

(mus(,t),vz) = —(wi(- 1), v). (3.28)

Let { = U — 7y, and let 7u™"' be defined as in (3.14). Then ¢° = 0, and for
n=0,...,M—1, £ = Urtl — 7y"*! satisfies

(O™, w) + (&8, we) = —(Fu™ | w) + (u],w), w e M, (3.29)

by (3.17) and (3.28). Adding (3.19) and (3.20) and applying (3.28), we obtain
(0™, v) + &+ v) = —(Qmu™t — uptlv), ve My @® M. (3.30)
Adding (3.29) to (3.30), with w = 8;£"*! and v = §,(£™+! — E™+1) = §,f*1 | we find

- 1
10+ [ + 1107 11* + 5 [AtllB€z+ 12 + Bu(l1€x+]12)]

= (0™, 8€™") + AHBLM, 0 ) + [(uf, 8,EM) — (B, 9]
+ (at(un+1 _ ﬂ,uﬂ'f'l), atfn+1) + (u;z+1 _ at,un+l’ at€n+1)
EII+12+I3+I4+15, (331)



where

g5 = (3, ), §€ Ms. (3.32)
Note that
- 2.
1311 = 3113l (3.33)
and
181" = 4 Ilglln (3.34)
We now estimate the terms Iy,...,Js. In the arguments to follow we repeatedly

use the Cauchy-Schwarz inequality,

(f,9) < Ifl llgll, f.9,€ L2

and the inequality,

ab < 2a +—b2 a,beeR, ¢>0, (3.35)

or, equivalently,

ab < Ba* + %bz, a,b8€R, >0 (3.36)

We also use (3.33) extensively.
First, choosing € = 3/4 in (3.35), we obtain

1
< 110l + 5 II<9€"+1H2 (3.37)

By (3.34) and (3.22),

2At :
L s —llo& 1" + IIatﬁ"“H?;- (3.38)

Next, adding and subtracting terms, we have
I3 (u? _ atun+l’ atgn+l) _ (atarﬁl 9 £n+1) (a un+l ) £n+1)
z+H ptnH?
< oar 70 [0 jut, o) - up(e)Patdz + Sl
_ in

— (DA™Y, 9™ + (QumtY, 9,6, (3.39)

By time truncation error analysis, the first term on the right side of (3.39) is bounded
by

CHAtIl'U«ttII%Z(tn,tn‘l-l;Loa)- (3.40)
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Moreover, expanding in a Taylor series, using the fact that the interval over which w;
is nonzero is symmetric about Z, we see that

|<atan+1 , atén+1> _ (atun+l’ atgn+1)|

t"+1

< CHA™ [ uess(-, )%t + SI10E™ 1], (3.41)
Thus
Iy < CHAt|usel|Lagn s,y + CHO A [tz [Fa(gn gm0 + €106 1% (3.42)
By (3.25),

tn+l

Lo Cart [ |lma —ur )t + Sjad P
tn

S CATRY|wel|Zaen nsr sy + €llOL™ [} + €]l8™ 2, (3.43)
and by backward difference error analysis,
Is < CAt||uge||Fain gni1,12) + €l|OE™ |4 + €]| 0™ 2. (3.44)

Bounding the right side of (3.31) by (3.37)-(3.44), choosing e sufficiently small
(€ < 1/24 is sufficient) and hiding the appropriate terms on the left, multiplying by
At, and summing on n,n =0,...,m — 1 < M, we obtain

m-1

> [0 113 + [10€™ 112 + Atl|az+ 2] At + |12

n=0
< ChYJuel[Za a2y + CHP||wel 2w
+ CHA|Junl|fa(pe) + CAL Jun|F2(12)- (3.45)
Note that, at this point, since m is arbitrary, we have an O(h2+ At+ H %) estimate
for ||£*]|. Thus, an estimate for ||U™ — u™|| has been obtained, at a loss of Hz. In
order to obtain an H 3 estimate, we proceed. )
Setting w = €™+ in (3.29) and v = £**! = ¢+ — 7+ ip (3.30), and adding the
resulting equations, we obtain

1 ; I
50 (I 11+ 11E117) + 5 (1107 1% + 110e™ 1 112) + 1162+ 1
= (8™ En+1) 4 At(D e+, 1y 4 [(u?,gn+1) — (Bt £n+1>]

+ (atun+1 _ atn.un-}-l,gn-l-l) + (u;t+l _ atun+l,é'n+l)

= IG+I7+18+19+110. (346)

Before estimating Is — I, we note that there exists a constant C1, independent
of h, such that

TP < Crllegt I’ 1<i< N (3.47)
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(Actually, C; = 1/4.)
Using (3.47), we find that

Io < CCH|OE™ |+ = Ie+ P
I
CHIIOE™ |+ ellez 1 (3.48)

N

Similarly, we have

At -
Iy < CCrHABE? + =&+
CiH

n 2eAt .
= CHAt|l3¢€I+1”2 + _C,I_Ii-'§|€k+llz
< CHAU|9LM ] + ellex™ | (3.49)

Here we have used (3.34), (3.22), and (3.47).
For the term Iz, we must bound

(u;‘ _ atun+1’£n+l) + [(0tun+l,£n+l) _ (at,&n+l , gn+1>] )
Following the argument used to derive (3.42) and applying (3.47) we find that
Is < CH?At||un||3o(in gmt1;pe0y + CHOAE ] Zo(om gmtagiwz,) + elléz|I*.  (3.50)

Moreover,
Iy = (%u™! —u™), ) — (G (u™ — mumth), £
< COATH( + H)lfudllagonmnsiom + 5 (1€ + 167 )
< CCIAtT R (14 H)llwel[Za(em 1,12y + €llEZFI2, (3.51)
and
Lo < CAH(1+ H)|luell2gn i1,y + €lléZ % (3.52)

Substituting (3.48)-(3.52) into (3.46), choosing € < %, multiplying by At, and
summing on n, we obtain

m-1
LHS < C(A®+h* +H®)+CH Y [lla£™|*At + ||0.£2+ |*A8?] (3.53)

n=0
where
- m-—1
LHS = [|E™|[F +I€™I17 + X2 N+ I1P At (3.54)
n=0
Applying (3.45) to the last term on the right of (3.53), we obtain
1E™||? < C(A + h* + H®). (3.55)

Since m is arbitrary, then by the triangle inequality, (3.55), and (3.24), we complete
the proof of the theorem. //



3.2 Extension to many subdomains

In this section, we generalize the scheme presented above to the case of more than
two subdomains. Let

0<H, £11<...<Zg<1-Hg <1 (3.56)

denote interface points between subdomains, with related parameters H, > 0, =
l,..., K. We assume Z;, Z; — H;, and z; + H, are points of § for each I. We also
assume that

Ty <& — Hy, (3.57)
and
T2+ HLL73, 1=2,...,K. (3.58)
We decompose M as
M= (@ﬁ,Mz,z) & (M/(EB{iIMI,I)) ;
where M, is the analogue of M/ for Z;. We also define interface functions wr, by

z=(Z1-Hy) i —H <z<3z,

.
wi(e) = =2 3 <2 <74 H, (3.59)

0, otherwise,

and denote by M$, the analogue of M5 for z;. Moreover, for g defined at z;, let
g1 € M, be given by

gi(z) = g(Z)wri(z). (3.60)
In this case,
GillZ, = (@i » &) = 13:(20) > Hy = |g(z:1)[* Hi. (3.61)

Set U® = mu® as before. For each interface, let U'*! € M$,. Then Upt!(z)) =
U™ (z;),1=1,...,K, is found by

@O, w) + (U, we) =0, we M§,, I=1,...,K. (3.62)

These equations determine U7f' € My,, which are the analogues of UF*! above.

Note that they can be solved simultaneously. Next, we solve,
QU™ 0) + Uz, 0,) =0, ve M/ (D, My), (3.63)

which decomposes into subdomain problems which can also be solved simultaneously.



We note that, under the assumptions (3.57) and (3.58),

K K
1> all* <3 lallk,, (3.64)
=1 =1
S 2 4 X 2
||IE(§1)$|| < ﬁlz; G112, (3.65)
=1 -

for i € M§,. We assume At and H satisfy

at_1

S (3.66)

where H = min; H;. When considering only the L2-stability of the scheme, it is
sufficient that
At < 3

F<§
The scheme (3.62)-(3.63) satisfies the following a priori error estimate.

Theorem 2 Assume that u satisfies the smoothness assumptions given in Theorem
1, and (3.66) holds. Then the algorithm (3.62)-(3.63) satisfies

max ||u® — U"|| < C(At + h® + KH{At + h? + H?)), (3.67)
where H = max; H;.
Proof of Theorem 2: The proof follows closely the proof of Theorem 1. The
analogue of (3.31) is
K
~ n 1 n n
SO NOE |17, + 110712 + 5 [At]|8:£2 12 + Bu(ll€x*1]7)]
=1 =

K
=3 {(@€™, a8 + avaert, a(6):)
=1
+ [}, 0r*Y) — (@t DY)
—(B(u™! = 7u™), ) — (! - B, B}
+ (at(un+l _ 7r.un+l),at£n+l) + (u:t+l _ atun+l,at£n+l). (368)
Multiplying (3.68) by At, summing on n, and applying the arguments used to

bound I, — I5 above, with the bounds (3.64)-(3.66) applied where needed, we find
that

m-—1 K .
s = S A [znatfr“n%,,+||ats"+‘||2]

n=0 =1

1 m-—1
+5 [Z A?]|0:62% 1 + |I£;"II2] (3.69)

n=0
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satisfies

m 1 m-1 K
& < (atq ZH@{"“II?At+( v g5+2) T Slagia

n=0 n=0 [=1

+ 5 Z A28 |2 + CAL JunllFa(rey) + ChJuel 22(ar2) (3.70)

n=0

+ CKHR w22y + CK HAL |[uge[32 (100 + CK H®||utze||72 (100,

where ¢, €, and B are positive constants. Choosing € = 312, a=3% and B = 2, then

the coefﬁcxent of the second term on the right of (3.70) is bounded by one, a.nd we
have

m-1

At Y [ [|8:67+ | |? + At||8:21 | ] < C(A? + h* + KH(R* + At? + HY)). (3.71)

n=0

The analogue of (3.46) is
1 ! cn411)2 n+112 At X fn41112 n+1112 n+1()2
50 ZIIE: e + 1E1 ) + = IZII% 7z, + 11OL™HI* ) + 11€2*H |
=1
— Z{ 0¢€"+1,€7+1)+At(3:§"+1 (& n+1 [(0 un+l n+1) <at(l~“)n+l , ”ln+1>]
+ (W)} — Q™ ) — (Bu(u™t! =yt £t
(u;‘*’l B,u"ﬂ,g,"'”)}
+ (at(un+1 _ 7run+l),€"+l) + (u;‘l.-l-l atun+l’£n+l)

K - At K .
< CKH 18,7112 + At n+1((2 ¢ n+1)12 ¢ nt1(2
< CKH [||a€"]1* + Atla¢: P+ | &I+ g gl @
+ Cl(zHGAt-l|IUtH%2(tn’tn+l;W°2°) + CI{szAtl|utt||%2(t",t"+1;L°°)
+ Ch* At (K?H? + KH + 1)||u,||§2(tn 1)

+CAt(I(H + 1)||utt||%2(t",t"+1;L2) + 2—5- max |£'{1+1|2.

< CKH||0:£™|* + CK HAL||9.£71 ||
+ CK2HO AL |uel|Zain gnts,wz ) + CK?H? At |72 (in nt1 009
+ CRAALTY K2 H? + KH + 1)| || 32 (1n nt1,112
+CAUKH + 1)||ue| (32 gms1,22) + €l €22 (3.72)

Here we have employed arguments similar to those used to bound I — I;o above,

and applied (3.64)-(3.66) and the inequality (3.47). Multiplying above by At, sum-
ming on n, and applying the estimate (3.71), we find

lE™* < C(AL® + h* + K2HX(AL* + b* + HY)).

Invoking the triangle inequality and (3.24) completes the proof of Theorem 2. //
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4 Two-space-dimensional Domain Decomposition

In this section, let @ = (0,1) x (0,1), and let u(z,y,t) satisfy

‘;_’t‘ _V.(DVu) =0, (2,5)€Q, te(0,T], (4.1)
u(z,y,0) = u’(z,y), (z,9) € Q, (4.2)
U(O, yat) = u(lvy’t) = 09 /S (O’ 1)7 te (09 T]’ (43)
u(z,0,t) = u(z,1,t) =0, z€(0,1), t€ (0,T]. (4.4)

Her: V = (58;, 5%), and D = (D;j(z,y)) is a smooth, symmetric, positive definite,

two-by-two matrix, satisfying,
D.I <D< D*I, (4.5)
for positive constants D. and D*.

4.1 Basic scheme for two subdomains

We consider dividing the domain  into two subdomains, (0,Z) x (0,1) and (Z,1) x

(0,1).
Denote by
br:0=zo<z1<...<zZN,41=1
a partition of (0,1) into intervals of length A¥ = z;4y — z;,7 = 0,..., N;. Similarly,

denote by é, a partition of (0, 1) into intervals of length A¥ = y;41 —y;, 7 =0,..., N,
and let § = 6, ® 4, define a partition of Q2 into rectangles. Let H > 0 be defined as
in Section 3.1, and assume Z (= zx), Z — H, and Z + H are all points of 6.

We let M C H'(f) denote the space of continuous functions on 2, bilinear on
each rectangle defined by 8, and zero on 052, and note that a basis for M is the tensor
product {vs,1(z),-..,vs,N. ()} ® {vs,1(¥), . -.,vs,n,(y)} of hat functions defin- ' as
in (3.5), with respect to the partitions é, and é,. We define spaces My, Mpg. and
M analogous to (3.6)-(3.8); for example,

M= {ve M| v(z,y) =0 for z > 7}, (4.6)

and we write W € M as

Ny k-1 Ny N:
W(z) = Y3 Wivs,i(x)vs, i) + Y > Wijvs,i(z)ve,.i(y)
j=1i=1 J=1i=k+1
Ny
+ D Wijvs, i/ T)vs,;(y)
i=1
= Wi(z) + Wr(z) + Wi(z); (4.7)

hence, Wy, € My, Wr € Mg, and W; € M.

12
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We define interface functions wy; by
wri(2,y) = wi(z)vs, ;(y), j=1,...,N,, (4.8)
where wy is given by (3.12), and set
MG =span {wy,,..., WI,N, -1} (4.9)
For g defined at (z,y), y € (0,1), let
9(z,y) = 9(z,y)wi(z). (4.10)

Hence, for W € M, W = E?’:”I Wijwi(z)vs, j(y) € MS. Also note that MiC M.
In this section, the elliptic projection 7u € M is defined by

(DVru(-,t), Vo) = (DVu(-,1), Vo) = —(uy(-,t),v), vEM, te [0,T]. (4.11)
Our domain decomposition approximation U™ € M to u™ is given by the following:
U° = mu®. (4.12)
Forn=0,...,.M -1,
(8.0 | w) + (DVU™, V) + AU DU \w,) =0, we Ms,  (4.13)

where, in this case, (-, -) is an approximation to (+,-) using the trapezoidal rule in z,
that is,

~ 1
(@™ w) = H /0 QU™ (, y)w(z, y)dy. (4.14)

Thus, the interface values U,:‘j'*'l, J=1,...,N,—1, are found by solving a tridiagonal

system of equations. This determines Up*?; Up*! and UL*! are determined by

(G:UL*,v) + (DVUE*!, Vo) = —(8,UpH, v) — (DVUF*, Vv), v € My, (4.15)
and
(BUE,v) + (DVUR, Vo) = —(Q,UF*,v) — (DVUF*, Vo), v € M. (4.16)

As in one space dimension, these equations decouple, and can be solved in parallel.
We assume, for concreteness, that At and H satisfy

1
&
When considering only stability, a more favorable constraint with upper bound of

5/12 can be assumed.
The algorithm satisfies the following estimate:

At
fﬁ“Dn”oo < (4.17)
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Theorem 3 Assume (4.17) holds. and assume u is smooth such that ||u|r2(wz2),
l|lu|lpo(wz) and ||uwl||L2(L=) are bounded. Then U given by (4.13)-(4.16) satisfies

max ||u™ — U™|| < C(At + h® + HR?|inh| + H?), (4.18)

where h = max(max; h¥, max; hY¥), and C depends on the smoothness of u, D., and
D*, but not on h, H, or At.

Proof of Theorem 3 Again, we compare the discrete solution with the elliptic
projection mu. Estimates of the form (3.24) and (3.25) hold. We will also use the
following L* estimates, which, for smooth D, are extensions [4] of estimates in [3]
for Laplace’s equation:

llu — mull1,00 < Chl|ul|2,c0, (4.19)

and
1
[lu — Tul|e < ChzlnEHqum. (4.20)

Let n = u — 7u, then adding (4.13), (4.15), and (4.16), and applying (4.11), the
error { = U — 7u satisfies €2 =0, and forn =0,...,M — 1,

(B, w) + (3™ v+ w) + (DVEH, V(v + w)) + At(Dp,€0  w,)
= (DV(EM! — €), Vw) + (07", w) — (u™! — ul,w)
= [@am*, w) — (8™, w)] + (8™, v) — (Bu™ — uft, v)
+ (0™ w) — At(Dppdrupt w,), (4.21)
where w € M$, and v € M & Mp.

Similar to the one dimensional case, we again divide the proof into two steps.
First, setting w = 9,£™*! and v = §,£"*! = 9,(¢™+! — €™+1) in (4.21), we find

5= IiE" (4.22)
=1
where
5 = 0& I + 1188 | + 504 DYVE
-'"/.—;“D%.V‘M’WH2 + AtHDz%zatE,’,‘“II’. (4.23)

The terms E;, [ = 1,...,8 will be analyzed one by one. First,

B = (DV(* - ), Vaé)
< S (allDEVag I + ZIIDEVAE ) (4.24)
— 2 o ’ °

14



where 0 < o < 1. Consider the last term. Using (3.34), which also holds in this case,
and the fact that D is symmetric positive definite,

IDEVaE |2 = ||Diatc’;‘“||2 + HDEB&E"“IP +2(Di2BEE*, 0.6
< (1+/\)||D LT+ (1 + )HD 2‘5’t€"+1||2
< _(1}T+i)||pn||w||at§"+1||;,+(l+ DIIDLaE|? (4.25)
where A > 0. Thus,
B < 2ptvaer e+ 2N b e,
+At(1+ )||Dzzat§"+1||2 (4.26)

Differentiating (4.11) with respect to ¢, and applying the estimate (4.20) for 7,
<a ﬁn+l o, £n+l>
tntl .
< CHA [ [ u(@,,0) = mua(@, y,0)dydt + |66}
S CHAt_l . h4(lnh)2,IUtH%Q(tn,tn+l;W°2°) + 6“3;5""’1”%,. (427)

E,

By time truncation error analysis,

Es; —(atu"+l - u?, atgn+1)

< CHAU|ual|Za(en imt1,100) + €]10:E™ || (4.28)
Now consider
Ei = (8™, 0,8™) — (8™, 9,6™H)
= / Zaté-n“% (y) - [H@,u"(i,y)—/:-:IHwI(x)atu"(m,y)dx dy.

Similar to the one-dimensional case, by Taylor’s expansion in z,

Ey < CHP At |ugl[Zo(en ns1,wz ) + €108 || (4.29)
Moreover,
E5 — (atnn+l,at(§n+l _ gn+1))
< CRAAEug[Za(en imt1,5r2) + €llOL™ ] + €]|0L™H 1%, (4.30)
EG — _(atun+l u;t+l (€n+l _ En+l))
< CAt||utt”L2(tn,tn+l;L2) + €|0L™? + €l|0:£™F |3, (4.31)

15



and
E: = (8™, 0,6
1 .
< Blleg™ P + @Haﬁ"“ll?{,

where 0 < 3 < 1. Here we have used (3.33), which also holds in this case.

Finally, consider Ejg,
Es = —At(Dndrult,0,6r+")
= —At(Dpdy(rul™t — altt), 0,£0+1)
—At(D2dal*", €7+
Eg) + Es ;.

By (4.19),

t"+1

Ees < C [ 1IDh((7u — ),)IP + eAtl| DEAEY |

IN

S CHhZHut”Lz(t",t""'l;Wgo) + 5At'|D§28t£;+lll2;
and, integrating by parts in y,

Es, At((D320,7+"),, B,E™H)
< CHAtII(D22uty)y”i’(t",t"“;L“’) + €l|0.™H 13,

(4.32)

(4.33)

(4.34)

(4.35)

Substituting (4.26)-(4.35) into (4.23), multiplying by At, and summing on n, we

obtain
m-1 At ™= t m-1 I
S srar < 2205 auipivag i+ (ka4 b +ear) 3 adipbognr
n=0 2 n=0 2a A n=0 y
At(1+ ) 1 m-1 -
+( aH2 ||D11”oo+@+66) EAtH@t{ +1||§{
m-1
+(B +2¢) 3 At||o£™||* + CH?|Jwi| |72 (wa
n=0

+C.Hh4(lnh)2||ut”iz(wgo) + CHAtZI lu“||%2(Loo)

+CR|uel (72 a2y + C AL |ueel 7212y

+CHR*At||uel 2wz + C HAL||(Daguy )y |72 (1)
Choosing a = 12, B = % A= % and € < 30, and noting that

Hh* HAt?

HR2AL <

then, under the condition (4.17), we have

S < C(H® + h* + At* + H(Ink)?h?),

16
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where

m-—1 - 1 ~
§ = Aty [ I + 110 |1 + adllnhag 1]

n=0
+||DEFVE™ |2, (4.38)

Setting w = "*! and v = "+ — @t iy equation (4.21), we have

5" = AH(DVIE, VEH) 4 (9t | vy
+ (ur - atun+l’£n+l) _ [<atun+l : £n+1> _ (atun+1’£n+1 )] + (amn+l,€n+1 _ £n+1)
- (atun-f'l - u:‘“, §n+1 _ £n+l) + (at€n+l’é‘n+l) _ At(D22at7r~u;t+l,£;z+l)

8
S E, (4.39)
=1

where

~ 1 “n n % in z n
5% = 30 (€1 + 111 + AIDAE ) + |1 Dhwgr

At n n 1o
+5 (108111, + o™+ + auDha& ) (4.40)

Again, we need the estimates on all the terms Ej, ... , Es. Most of the estimates are
very close to the estimates for the terms E, ..., Es above, except for the terms El, Eq,
where summing by parts is used. Thus, we state some of the results without giving
all the details.

Multiplying by At, summing on n, summing by parts on n, and following argu-
ments similar to those used for E; above,

At mf E} = —At mf A(DVE™, VL) + At(DVE™, VE™)
n=0 n=1
< %mz IDEVEr? + é,f— mz IDEVaE P At
+COAUIDIVER[ + At DEVE
< 52 IR+ oS (a8 Ihac+ acinhog ]
+OA|DAVE™ | + ellé™ I3 + eAtl| DRI (441)

Here we have used the analogue of (4.25) to bound At||DzVEé™||2.
By (4.20),

By < CHATR(Ib) ludlagm mngrg) + IE . (442)
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Note that by using a one dimensior:al imbedding result, we have for v € M,
1 1 1
[ v < [ (¢ [ vieyds)dy
= CllvalP?,

and, consequently,

ol < CHllvo||
Moreover, since M € H} (),

vl < ClI Vol
Thus, by (4.44) and (4.43),

Eg S CH2At_lh4(lnh)2”utl|%2(tn’tn+1;wg°) + 6l|V£n+1”2,
E3 < CH*At|[ual[Z2 (g gnt1,000) + €l[VE]?,

and, by the argument used to bound E, above, and (4.43),
Ey < CHO At || 2o (i nt1,w2y + €l VEH]2.
For the terms Es and Eg, we use (4.44) and (4.45) to deduce that

Es+Es < C(1+ HR At Jug 2o en insr,m2)
+C(1 + H)At”uttlIzz(t",t"“;Lz) + €| |[VE2

Furthermore, by (4.43),

E7 S CHH&{"'“H"’+e||V€"+1||2.

(4.43)

(4.44)

(4.45)

Finally, adding and substracting (D;20;i, f;‘“), multiplying by At, summing on
n, summing by parts on n, and integrating ( D24y, a,é;“) and (Dq24, f;") by parts

in y, we obtain

m-—1 m-—1
At X-:o Ef = At Zo At(Da(iy —ay), 0£5™")

+A( Dy (7] — ), &)

y

INA

m-1
C(Ath* + At?) Y~ |[u”][3 LAt

n=0

+C(Ath’H + At?)||ul|feoqwz,) + At||DHEN | + €| IE™ 14

m—1 . 1 .
+CH Y [I1™1 At + A2|IDLAE .

n=0

18
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Choosing € = ¢(D.) sufficiently small, summing (4.39) on n, substituting the above
estimates on E, through Es, and hiding appropriate terms, we obtain

m-1

Il s oAt B) Y (087 1At + A2IIDEAE ]

=0

+CAY|D?VE™|* + CH Z 10:6™H I At + CH(Inh)*A*| || 72

n=0
+C H* AL |[ual|F2(pe) + CH®|luelZ20wz ) + Ch*||uellZ2 (a2
+C AL |lun| 3212y + C (AL + W)l ooqwz)- (4.52)
Finally, applying (4.37), we find that
[|E™1> < C(At? + h* + HS + H*(Inh)?RY). (4.53)

By applying the triangle inequality and (3.24), this completes the proof of (4.18). //

4.2 Many subdomains

An extension to a multiple strip decomposition is now straightforward. In particular,
we assume a decomposition into K + 1 subdomains (z;,%141) x (0,1), [ = 0,..., K,
with Zo = 0, Zx41 = 1,and z;,l = 1,..., K, interior interface points with parameters
H; > 0, each satisfying the constraint on H given above. As before, we assume

— H,, Z;, and Z; + H, are points of §,, and we assume (3.57) and (3.58) hold. At
each interior interface, we solve explicit equations of the form (4.13). These equations
decouple and can be solved in parallel, as can the interior equations, which are of the
form of (4.15).

We have the following result.

Theorem 4 Assume that u satisfies the smoothness assumptions in Theorem 3, and

At 1
||Dn||ooﬁ <

where H = min; H,. Then, the multidomain algorithm satisfies
max |[u" —U"|| < C(At+ h*+ KH(At + h* + h*|Ink| + H?)),  (4.55)

where H = max; H,.

(4.54)

The proof of Theorem 4 is similar to the proof of Theorem 3, just as the proof of
Theorem 2 was similar to the proof of Theorem 1, and is omitted.

When considering only L2-stability, we require that

t
2Dl < o

Remark: The estimate (4.20), which is used in the proofs of Theorems 3 and 4,
is a “worst-case” approximation to the actual error at the interface. The resulting
term in (4.55) is of order K Hh?|Inh|. The constant K is related to the number of
subdomains, and in practice is bounded by the number of processors. The parameter
H goes to zero with h and At, thus, under reasonable assumptions on K and H,
K H|Inh| also goes to zero with h, or is at least bounded as h — 0.
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5 Numerical results

We conclude by presenting some numerical results for the two-dimensional scheme
analyzed above. We consider two problems on = [0,1] x {0, 1]:

Problem 1:
u,—Au=0, (z,y)€N, te(0,T], (5.56)
u(0,y,t) =1, u(l,y,t)=0, y€(0,1), t€(0,T], (5.57)
u(z,0,t) = u(z,1,t) =0, ze€(0,1), t€(0,T], (5.58)
u(z,y,0) =0, (z,y) € Q. (5.59)
Problem 2:
—Au= f(m’ y)’ (.’L‘, y) € Q» te (OaT]a (560)
u(z,y,t) =t, (z,y) € 99, (5.61)
u(z,y,0) = 16z(1 — z)y(1 — y), (z,y) € O, (5.62)

where f(z,y) = 1+ 32(z(1 — z) + y(1 — y)), which has solution u(z,y,t) =
t+ 16z(1 — z)y(1 — y).

We compare our scheme for 1, 2, 4, and 8 subdomains. These runs were per-
formed on an Alliant FX/8 computer, at the Advanced Research Computing Facility,
Argonne National Laboratory. This computer has a shared memory architecture with
8 processors. The scheme for 1 subdomain was equivalent to the standard backward-
in-time Galerkin method. The discrete system of equations generated by the method
was solved using preconditioned conjugate gradient iteration, with diagonal precon-
ditioning. Therefore, the timings of the runs are effected not only by parallelization,
but by the number of iterations required to converge the conjugate gradient routine in
each subdomain. Hence, it is possible to obtain speed-up by more than the expected
factor when subdividing the problem.

In these runs, a global 80 by 80 uniform mesh was employed. The time step
was .001. In the decomposition, Z; = [/(K + 1), = 1,...,K, where K + 1 is the
number of subdomains. Timings for the scheme as the number of subdomains varied
are presented in Tables 1 and 2. The times reported were averaged over several runs
performed at 0% capacity (we were the only users); 20 time steps were taken. We
also report the number of conjugate gradient iterations, averaged over time and the
number of subdomains, that is, if ¢} represents the number of conjugate gradient
iterations required in subdomain ! at time t", we compute

M K+1

'n-ll 1

where M is the total number of time steps (M = 20 in this case). This number
should in general decrease as the number of subdomains increases, since the number
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l Problem 1 |

# of s.d. | CPU time (sec) | aver. no. of c.g. iter.
1 71.1 23
2 44.5 23
4 22.2 17
8 11.2 10

Table 1: Timings for Problem 1

[ Problem 2 ]
# of s.d. | CPU time (sec) | aver. no. of c.g. iter.
1 87.5 28
2 43.5 26
4 23.0 24
8 17.6 19

Table 2: Timings for Problem 2

of unknowns per subdomain decreases as we subdivide, and since the number of
iterations for convergence using preconditioned conjugate gradient is dependent on
the number of unknowns.

By examining Tables 1 and 2, we see that the algorithm performs quite well,
especially in the 1-4 processor range, and does well even for 8 processors for Problem
1. These results are not meant to be conclusive, and the performance of the scheme
will certainly vary from one machine to another.

Solutions for some of these runs are plotted in Figures 1 and 2. In Figure 1, we
compare the fully implicit solution with the domain decomposition solution with 8
subdomains, at t = .02 and y = 1/2, for Problem 1. In Figure 2, we compare the
true solution with the domain decomposition solution with 4 subdomains at time t
= .1 and y = 1/2 for Problem 2.
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