Analysis of Synchronization
in a Parallel Programming
Environment

Jaspal S. Subhlok

CRPC-TR90068
August, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

0 Y]

(35}

v/

Analysis of Synchronization in a Parallel
Programming Environment

Jaspal S. Subhlok

Abstract

Parallel programming is an intellectually demanding task. One of the most difficult
challenges in the development of parallel programs for asynchronous shared memory
systems is avoiding errors caused by inadvertent data sharing, often referred to as
data races. Static prediction of data races requires data dependence analysis, as well
as analysis of parallelism and synchronization. This thesis addresses synchronization
analysis of parallel programs. Synchronization analysis enables accurate prediction
of data races in a parallel program. The results of synchronization analysis can also
be used in a variety of other ways to enhance the power and flexibility of a parallel
programming environment.

We introduce the notion of schedule-correctness of a parallel program and relate it
to data dependences and execution orders in the program. We develop a framework
for reasoning about execution orders and prove that static determination of execu-
tion orders in parallel programs with synchronization is NP-hard, even for a simple
language. _

We present two different algorithms for synchronization analysis that determine
whether the cumulative effect of synchronization is sufficient to ensure the execu-
tion ordering required by data dependence. The first algorithm iteratively computes
and propagates ordering information between neighbors in the program flow graph,
analogous to data flow analysis algorithms. The second algorithm computes the nec-
essary path information in the program graph and uses it to transform the problem
into an integer programming problem, which also is NP-hard. We present a heuristic
approach to solving the integer programming problem obtained and argue that it is
efficient for the problem cases that we expect to encounter in our analysis. We discuss
the merits, shortcomings and suitability of the two algorithms presented.

RICE UNIVERSITY

Analysis of Synchronization in a Parallel
Programming Environment

by
Jaspal S. Subhlok

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

A Y

Kenneth Kennedy, Chairman k
Noah Harding Professor of Computer
Science

Willy Zw’ienepoel

Associate Professar of Computer Science

Andrew Boyd L/ .
Assistant Professor of Mathematical
Sciences

Houston, Texas

August, 1990

i

We have developed a prototype implementation of synchronization analysis. We
discuss the implementation and practical issues relating to the effectiveness and use-
fulness of our analysis.

Acknowledgments

I first wish to thank my advisor Ken Kennedy for being the architect of an excellent
environment for this research, and for being a source of advice and encouragement.
This dissertation originated from discussions with David Callahan, who directed most
of the initial research. Other members of my thesis committee, Willy Zwaenepoel and
Andy Boyd, provided plenty of help and support. I had many technical discussions
with Chau-Wen Tseng and John Mellor-Crummey which had a significant impact on
my dissertation. Don Baker and Kathryn McKinley helped with proofreading the
thesis draft.

Finally I wish to thank all those people who contributed in many different ways,
but are too numerous to thank by name. Much inspiration for this research came
from discussions with many members of the PFC and ParaScope research groups.
My basketball and other sports teammates provided the perfect counter to academic
research. Thanks to everybody who helped create a pleasant insanity around my
existence in graduate school.

Contents

Abstract
Acknowledgments

Introduction and Overview

1.1 Imtroduction
1.2 Research Background - PTOOL
1.3 RelatedWork

14 Overviewof Research, . .

Analyzing Parallel Programs
2.1 AParallel Language
2.2 Synchronization
" 2.3 Schedule-Correct Parallel Execution
2.4 Distance Vectors in Programs with Loops
2.5 The Synchronized Control Flow Graph

...................

.................

Synchronization Analysis as a Data Flow Problem

3.1 ExecutionOrder

32 PreservedSets

3.3 A Data Flow Formulation

3.4 Adaptation for a Practical Implementation
3.4.1 Synchronization Cycles
3.4.2 InitializationEdges
3.4.3 Forcing a Polynomial Solution

Algebraic Formulation of Synchronization Analysis

4.1 Formulating Systems of Equations
4.1.1 Program Restrictions
4.1.2 Transformation Procedure

ii

O W N =

© g3 oo O

11
12

15
15
16
20
25
25
27
28

413 AnExample.
4.2 Analyzing more Complex Programs
421 ExtendedBlocks
4.2.2 Eliminating MultipleEdges
4.3 Comparing the Two Methods

Solving Linear Equations in Non-negative Integers

5.1 Solving Systems of Linear Diophantine Equations
5.1.1 Mathematical Concepts
5.1.2 Smith Normal Form
5.1.3 Solving Equation Systems

5.2 Finding Solutions in a Feasible Region
5.2.1 Fourier-Motzkin Elimination Method

5.3 Identifying Integer Solutions
5.3.1 The Case of Two Dimensions
5.3.2 Solution for n Dimensions
5.3.3 Handling Infinite Regions

" Other Synchronization Mechanisms

6.1 Event Synchronization with CLEAR statement
6.2 ADARendezvous
6.3 Semaphores
6.4 Locks and Critical Sections
6.5 Summary

Conclusions and Future Work

7.1 Research Contribution
7.2 Significanceof Research
7.3 Implementation
7.4 Synchronization in Parallel Programs
7.5 FutureWork R
7.5.1 Other Synchronization Mechanisms
7.5.2 Removal of Redundant Synchronization
7.5.3 Insertion of Synchronization

7.5.4 Program Transformations

vi

34
35
35
36
38

40
41
41
43
46
50
51
53
53
62
63

65
65
67
69
71
71

7.5.5 Synchronization in Distributed Memory Multiprocessors

7.5.6 Combining Static and Dynamic Analysis

Bibliography

............

vii

Chapter 1

Introduction and Overview

1.1 Introduction

In the last decade automatic vectorizing and parallelizing technology has become
fairly sophisticated enabling transformations that lead to fast execution of originally
sequential programs on high speed multiprocessors. Although there have been many
successes, a fully automated approach to utilization of multiprocessors has inherent
limitations. It is increasingly apparent that a significant amount of parallelism cannot
be extracted from sequential programs by automatic methods because automatic
techniques cannot grasp certain program intricacies that are critical for exploiting
parallelism. Moreover, automatically generated parallel programs often lead to a
high synchronization overhead during execution. Often the most suitable way to
increase parallelism in an application is to redesign the algorithms being used or
directly encode the parallelism.

Thus, it seems that to make the best possible use of multiprocessors, the user needs
to be more involved in the development of parallel programs. Unfortunately parallel
programs are harder to write and debug than sequential programs. The speedups
achieved by parallel programming may simply not be enough to justify the additional
effort that a programmer has to invest to achieve the desired results. To make parallel
programming profitable, it is extremely important that the development time for a
parallel program be comparable to that of an an equivalent sequential program. We
believe it is possible to make parallel programming more profitable and less of a burden
in a programming environment with powerful tools that aid in the development and
debugging of parallel programs. '

To help a programmer with parallel programming, we must understand how par-
allel programming is different from sequential programming. A programmer has to
specify controlled parallelism when writing a parallel program. Parallel programming
languages provide constructs for specifying parallel execution of code segments. The
language or a runtime library provides mechanisms for synchronization, that can be

1

used to enforce execution ordering within the code segments that are specified to
execute in parallel. Language constructs are used to specify parallelism, and syn-
chronization mechanisms are used to constrain parallelism to ensure correctness. The
intricate relationship between parallelism, synchronization and correctness is an im-
portant factor that makes parallel programming difficult. An incorrectly specified
parallel program can lead to various anomalies that include deadlocks, unexpected
non-determinism, or just poor performance.

Although, only the programmer alone can know and specify exactly what a pro-
gram should do, it is possible for a programming environment to automatically iden-
tify a large class of possible programmer errors by static analysis of the program.
Moreover, a static analysis tool can suggest transformations that will uncover addi-
tional parallelism. Information collected at runtime can sharpen the results obtained
by static analysis. Static and dynamic analysis can be used together for debugging
and removing performance bottlenecks.

Considerable amount of research has been dedicated to the development of tools
and techniques to enhance parallelism and to aid programmers in parallel program
development. The goal of this research is to develop an understanding of synchro-
nization, so that the tools and techniques for program development can be extended
to programs with explicit synchronization. The specific problem addressed in this
thesis is to automatically detect if synchronization in a parallel program is sufficient
to ensure that there is no anomalous behavior, and to point out potential anomalous
behavior if it exists.

1.2 Research Background - PTooL

PtooL [ABKP86, BBC*88] is a prototype tool developed at Rice University to aid
parallel program development. The tool consists of two components, PSERVE and
PQUERY. PSERVE is a static program analyzer that identifies potential regions for
parallelization and collects data dependence information for the program. PQUERY
is an interactive browser that provides parallelization related information to the user
to aid parallelization. PTOOL has proven effective at assisting users in-developing
parallel programs [Hen87].

When we first implemented PTOOL, we assumed that programmers would use it
on sequential Fortran programs that were to be converted to a parallel form suitable

for execution on a shared memory multiprocessor. Hence, it only handled sequential

programs. However in practice, its users preferred to write a program in parallel form,
invoking PTOOL only when a data race was discovered during testing. Users of PTOOL
felt that a tool of this nature should accept “parallel Fortran” as input and understand
its features, including synchronization statements. Also, in many instances PTOOL
would report a data race that the user with superior knowledge of his program knew
did not exist. This made it difficult for users to locate the actual sources of problems
in their programs. An effort was made to overcome these limitations in a redesign of
PTOOL, and in the design of ParaScope, a parallel programming environment being
developed at Rice [CCH+87, BKK*89).

There are two main reasons why PTOOL would sometimes report a false data
race. Since data dependence analysis assumes a dependence between two references
to the same variable whenever the absence of a dependence cannot be proved, many
dependences assumed to cause a data race did not actually exist. An effort was
made to make the computation of parallelization-inhibiting dependences as accurate
as possible. In particular, since dependences on variables that are private to a loop
body do not inhibit parallelization, accurate detection of private variables significantly
reduces the number of false data races that are reported. The other reason for false
reports of data races was PTOOL’s inability to understand synchronization. Since user
inserted synchronization can be used to eliminate potential non-determinism caused
by dependent statements specified to execute in parallel, it is important to analyze
synchronization in a program and infer its effect on program behavior. In this thesis
we discuss the handling of event variable style synchronization. Extensions to other
synchronization mechanisms are also briefly discussed.

Through the proper use of event synchronization, the user can insure that a partic-
ular dependence is always satisfied by forcing the code at the sink of the dependence
to wait until the code at the source has been executed. This thesis develops a method
for determining which dependences in a program cannot possibly result in a data race
because of schedule restrictions enforced by event synchronization.

1.3 Related Work

We discussed in the last section that experience with PTOOL was the main motivation
for this thesis. In this section we discuss other parallel programming environments and
research in anomaly detection. While we are not aware of any commercial ambitious

parallel programming environments, there have been several research efforts in that
direction.

Taylor [Tay83a] has established that most interesting questions about the syn-
chronization structure of ADA programs (for example, can there be a deadlock?) are
NP-hard. He suggests an algorithm for static analysis of programs based on estab-
lishing concurrency states [Tay83b]. However the algorithm is roughly exponential in
the number of concurrent tasks in the program.

The Anomaly Reporting Tool(ART) [AMS5] is a system for developing parallel
Fortran programs on shared memory multiprocessors. The static analysis phase of
this tool examines the parallelization and synchronization constructs in a parallel
program and constructs a concurrency history graph that represents all the states that
the program can possibly enter. Program analysis and concurrency history graph can
reveal various anomalies in the program, such as deadlocks and race conditions. The
main drawback of this approach seems to be that the size of the concurrency history
graph is potentially exponential in the number of possibly concurrent tasks. They
claim that the the actual size is manageable for many real prograims.

Another approach to developing parallel programs is used in the BLAZE program-
ming environment [MR85, KMR87]. The language BLAZE is designed in a way that
parallelism is easily exposed and can be exploited by a parallelizing compiler. Thus
explicit parallelization is done solely by the compiler.

FAUST [GGGJS88] is a programming environment being developed at the University
of Illinois. Its goal is to present a consistent user interface, which can be used for all
aspects of program development. Interactive optimizing transformations are provided
which can be tuned to various target architectures. The literature on this tool does
not mention whether explicit synchronization mechanisms are supported.

Emrath and Padua [EP88] suggest some ideas on detection and classification of
nondeterminism by analyzing synchronization on a shared memory multiprocessor.

Dinning and Schonberg [Sch89, DS90] investigate methods for “on the fly” de-
tection of access anomalies in parallel programs. Padua and others [EP88, EGP89]
discuss “post-mortem” debugging of parallel programs aimed at detecting parallel ac-
cess anomalies. Miller and Choi [MC88], and LeBlanc and Mellor-Crummey [LMC87]
present efficient methods to reconstruct a program’s execution schedule from program
traces for debugging and performance analysis.

ParaScope [BKK+89] is a programming environment designed for interactive de-
velopment and transformation of parallel programs. The implementation discussed
in this thesis was developed inside ParaScope.

1.4 Overview of Research

An outline of the research presented in this thesis is enumerated below:

1. A model to reason about parallel programs with event style synchronization
that is used for all our analysis procedures. Development of the notion of
“schedule-correct” execution for parallel programs based on data dependences
and execution orders.

2. A data flow analysis based algorithm to find execution orders in parallel pro-
grams to determine “schedule-correctness” and to find potential data races.

3. An algorithm to convert the problem of identifying data races to finding solu-
tions of a system of linear equations in non-negative integers. The algorithm is
based on finding regular expressions representing all paths between statements
which are candidates for potential data races.

4. An algorithm to find if a system of linear equations has a solution in non-
negative integers. This method is suitable for the problem instances encountered
in synchronization and data dependence analysis.

3. Discussion of potential and limitations of extending these techniques to other
synchronization mechanisms.

6. A prototype implementation to detect data races statically using some of the
algorithms in this thesis.

Chapter 2

Analyzing Parallel Programs

The compiler analysis of parallel programs is fundamentally different from correspond-
ing analysis for sequential programs. While the execution of a sequential program for
a given data set corresponds to a unique ordering of statement instances, for a paral-
lel program the set of statement instances that will execute may not be defined, and
only a partial order is defined between the statement instances that do execute. In
this chapter we shall describe a simple parallel language which captures the paradigm
of programming on a shared memory multiprocessor, and discuss the fundamentals
of analyzing execution orders in parallel programs. In subsequent chapters we will
develop methods for synchronization analysis of parallel programs.

2.1 A Parallel Language

Our main interest is in parallel programs written for shared memory multiprocessors.
The programming language assumed is Fortran 77, with parallel constructs that are
supported on most parallel Fortran implementations. We now state the extensions to
Fortran used for expressing parallelism and synchronization.

Parallel DO and Parallel Case

Parallelism can be expressed via two language constructs: parallel DO and parallel
case. These are reasonably standard [FJS85, Par88] and we make no unusual assump-
tions. The parallel DO is syntactically and semantically very similar to the Fortran 77
DO loop. Here we use DOALL to indicate a parallel DO (illustrated in Figure 2.1(a)).
When control reaches a parallel DO, all instances (iterations) of the loop body are
started and proceed concurrently, but asynchronously. A parallel DO completes and
control continues to the next program statement only when all instances of the loop
body have completed.

The parallel case describes a fixed set of tasks to be executed concurrently. An
example is illustrated in Figure 2.1(b), where each Si represents a list of statements.

6

DOALL 10 I = 1,10 PARALLEL BEGIN POST(ev)
. Sl .

END DOALL PARALLEL WAIT(ev)

PARALLEL
Sn
PARALLEL END

(a) (b) (c)

Figure 2.1 Asynchronous parallel constructs and
Synchronization statements

When control flow reaches a parallel case, each Si begins execution concurrently, but
asynchronously, with the others. A parallel case completes and control continues to
the next program statement only when all of the Si have completed.

Parallel constructs may be nested inside parallel constructs. Branches are not
allowed from within a parallel construct to outside the parallel construct or vice
versa.

' We use the term task to refer generically to an instance of the body of a parallel
DO or one of the statement lists of a parallel case. We will use the term thread to
refer to a task while it is executing. When a parallel construct is executed, one thread
is created for every task in the construct.

2.2 Synchronization

Many different mechanisms are used for synchronization in programs written for
shared memory multiprocessors. These include locks, semaphores, event variables,
critical sections and a few others. The analysis procedures developed in this thesis
are based on inferring execution orders between statements. For most of the discus-
sion in this thesis, we shall assume that synchronization is provided by event variables,
which is one way of specifying execution orders between statements. In the rest of this
section we briefly discuss some of the synchronization methods that are commonly
used in shared memory multiprocessors. A more detailed discussion of how other
synchronization methods fit into our analysis is postponed to Chapter 6.

Event Variables

An event variable is always in one of two states: clear or posted. The initial value of
an event variable when a program starts execution is always clear. The value of an
event variable can be set to posted with the POST statement shown in Figure 2.1(c).
The value of an event variable can be “tested” with a WAIT statement, also shown in
Figure 2.1(c). A WAIT statement suspends execution of the thread which executes it,
until the specified event variable’s value is set to posted. A CLEAR statement resets
the value of an event variable to clear.

As an example of the use of asynchronous parallel constructs with event variable
synchronization, consider the program fragment shown in Figure 2.2(a). The parallel
case defines two tasks: the first produces values of I and J, and the second uses these

Begin

S

I=1 WAIT(EV1)

PARALLEL BEGIN
I=1
POST(EV1)
J=2
POST(EV2)

PARALLEL J=2 WAIT(EV?2)
WAIT(EV1) .

K=1I+1

WAIT(EV2)
I=1+] POST(EV2) =J+I

PARALLEL END ‘\\\\\\\\ ////////'

End

POST(EV1) K=I+1

(a)
(b)

Figure 2.2 Example of explicit synchronization

values. Figure 2.2(b) is a graphical representation of this program fragment. The
thicker lines crossing between tasks represent synchronization between the tasks.

In the analysis procedures developed in the next two chapters, we assume the
absence of CLEAR statements. We discuss the implications of CLEAR statements in
programs in Chapter 6.

ADA Rendezvous, Ordered Critical Sections and Semaphores

These synchronization mechanisms specify certain order of execution between code
sections. Thus it is possible to statically infer facts about execution orders from
synchronization statements to enhance program analysis. In Chapter 6 we discuss how
our analysis techniques can be extended to these kinds of synchronization mechanisms.

Locks and Critical Sections

Locks and critical sections specify code sections which must be executed as mutually
exclusive blocks. By themselves, they do not provide any information about statement
execution orders. Along with other control flow and synchronization constraints,
however, locks and critical sections can provide useful static information.

2.3 Schedule-Correct Parallel Execution

We introduce the notion of “schedule-correctness” for parallel execution to character-

ize the kinds of program errors that are caused by incorrect parallelism in a program.

Sequential Execution

A canonical sequential execution schedule of a parallel program can be defined by
describing a canonical sequential execution schedule for each of the parallel constructs.
The sequential execution of a parallel DO is simply the obvious sequential iteration of
the instances of the body, as if it were a sequential Fortran DO loop. The sequential
execution of a parallel case is the sequential execution of statement lists in the textual
order in which they occur in the program. '

If during sequential execution of a parallel program, a WAIT statement is executed
and the corresponding event variable is not already posted, then we say that the
sequential execution of that program is undefined. If a program’s sequential execu-
tion is defined for all input data sets, we classify that program as serializable. We

10

assume serializability throughout this thesis, but the techniques developed can also
be used for non-serializable programs. Our primary interest is in debugging scientific
programs (where parallelism is primarily a performance issue) using event variable
synchronization for software pipelining, so the restriction to serializable programs is
reasonable.

Correctness and Dependence Analysis

A data dependence [AK87, Kuc78] exists between two statements if they both
access some memory location M and at least one of them modifies that location:

Definition 2.1 A data dependence s; A s, (read “s; depends on 81") exists if there
is a memory location M such that both s, and s, access M , at least one of them
stores into M, and, in the sequential execution of the program, s, is executed before
s2. A data dependence is carried by a loop L if s; and s, are statement instances in
different iterations of L.

Much research has focused on identifying data dependence relationships and using
them for loop restructuring transformations [KKP+81]. Data dependences capture
the constraints on a program’s data flow that are necessary to ensure correct results
if a program is executed in parallel. If there are no data dependences between a pair
of statements, the results of executing them are independent of the order in which
they are executed.

An incorrect parallel program is defined to be a program whose output may differ
from the sequential execution output on some input data:

Definition 2.2 A parallel program is schedule-correct relative to sequential ex-
ecution if all parallel executions compute the same results as the sequential execution.

Since the execution state of a program consists of the program counter for each
thread and the value for each memory cell, a difference between a parallel execution
and the sequential execution must be recorded in memory at some point. In par-
ticular, for some memory location an incorrect program must contain a read/write,
write/read, or write/write/read sequence that holds in the sequential execution but
does not hold in some parallel execution. This notion is captured in the next defini-
tion:

11

Definition 2.3 A data dependence s; A s, is preserved if, for all parallel exe-
cutions, s; begins execution after s; has completed execution, whenever both are
executed.

In a language with asynchronous parallel constructs, the semantics of a program
are well-defined (schedule-independent) if there are no dependences between con-
current tasks. Thus, a parallel program is schedule-correct if all dependences are
preserved on all parallel executions.

When a parallel program is not provably correct, any dependence which is not
preserved is a potential error in the parallel program. Our objective is to be able to
isolate such dependences and present them to the user as parallel execution hazards.

2.4 Distance Vectors in Programs with Loops

For reasoning about parallel programs, we have to identify and represent individual
statement executions. This is not a problem for programs without loops, where
mapping from static to dynamic statement instances is straightforward. However, for
a program with loops, each static statement may correspond to multiple execution
statement instances.

We associate an iteration number with every execution instance of a loop body,
which is the order of execution of that instance of the loop body in the program’s
canonical sequential execution. Thus every execution of a statement is associated
with a unique iteration vector whose components are the iteration numbers of all

the enclosing loop bodies.

‘ Data dependence analysis associates distance vectors with data dependences, de-
noting the number of iterations across which a dependence is carried. Here we state
the definition of dependence distance vectors in terms of iteration vectors. Let there
be a data dependence D from statement s; to s, (82 depends on s,) due to an access to
a variable in shared memory. If s; executing with iteration vector 1, always accesses
the same memory location as s; executing with iteration vector z';, then 65 =1y- 1
is the dependence distance vector of data dependence D.

In our discussion we assume that all data dependence vectors are integer vectors
that can be computed by data dependence analysis techniques. While this is by far the
most common case, many exceptions are found in scientific programs. Our analysis
procedures can use partial dependence distance information if constant integer vectors

w

12

DOALL I
DOALL J
WAIT(EV(I-1,J-1))
S DCC(I,J) = A(I,D)
A(I+2,J+2) = B(1,J)
POST(EV(I,J))
END DOALL
END DOALL

Figure 2.3 Dependence and Synchronization distance vectors

D: Data dependence with
distance (2,2)

S: Synchronization edge
with distance (1,1)

do not exist or are not computable. In particular, if only direction vectors are available
(it is only known whether the distance terms are positive, negative or zero) they can
be used for partial analysis.

A distance vector term is meaningful for a POST and WAIT statement pair acting
on the same event variable. Let s; be a POST statement and s; be a WAIT statement
accessing a common set of memory locations (they act on the same event variable,
which may be an array). If s, executing with iteration vector 1, always posts the same
memory location that s; executing with iteration vector z; waits on, then 6-,; = z'; -1
is the synchronization distance vector for the synchronization edge from s; to s,.
The context of synchronization edges is a program graph discussed in the Section 2.5.
Figure 2.3 shows an example of a dependence and a synchronization distance vector.

The synchronization distance vector defines the relative distance in terms of iter-
ation numbers for which a pair of event variable directives are meaningful. Standard
data dependence analysis techniques are normally able to compute the synchroniza-
tion distance vectors, which are almost always integer vectors. We mark the syn-
chronization distance components that are not simple integers by “x”. They are not
of use in our methods directly but can have special significance. One such special

case, that of a synchronization edge coming in from outside of a loop, is discussed in
Chapter 3.

2.5 The Synchronized Control Flow Graph

Analysis of synchronization is similar to the analysis of control flow in that no resolu-
tion is needed in straight-line code without synchronization statements. The primary

13

program representation used in this section is a modified form of the control flow
graph, in which the nodes represent a form of basic blocks and edges represent both
control flow and “synchronization flow”.

———> Synchronization Edge B1| POST(EV(1))
(0):
----> Control Flow Edge y
B2 DOALL I
0)
O *)
B3| C(I)=C(I)-3
POST(EV(1)) 0 l
DOALL I = 1, 100 ()v
C(I) = c(1) - 3 WAIT(EV(I))
WAIT(EV(I)) B4| T=T+C(I) ji>(1)
T=T+ C(I) . POST(EV(I+1))
POST(EV(I+1)) 0 |
- END DOALL ()é

B5| END DOALL

Figure 2.4 Synchronized Control Flow Graph for a Simple Loop

The control flow subgraph is a directed graph, G, = (N, E.), where the nodes
N are basic blocks [ASU86] built under the condition that a block in N must contain
no control flow! and may contain at most one WAIT, which must be the first statement
in the block, and at most one POST, which must be the last statement in the block.
An edge represents a possible transfer of control from one block to another. Both
parallel case and parallel DO are represented as a pair of nodes. One node represents
the point where new threads are created (the fork node) and the other represents the
point where threads are destroyed (the join node). Each task in a parallel construct
is required to be a single-entry single-exit region. For each task inside the parallel

1This restriction is stronger than is necessary. Internal control flow can be allowed, for example,
loops and complete if-then-else blocks without synchronization statements in their bodies can be a
part of a basic block.

14

construct, there is an edge from the fork node to the entry of the task and an edge
from the exit of the task to the exit node. There is no “back edge” from the bottom
of a parallel DO to the top.

All edges in this graph are labeled with a distance vector which represents the
iteration span over which the edge is meaningful. The control flow edges are trivially
labeled with all zero distance vectors implying that the execution of the sink block
with a particular iteration vector must follow the execution of the source block with
the same iteration vector, if both are executed. However, in the case of the control
flow edge from the last basic block in a sequential loop to the top of the loop, the last
basic block in the previous iteration of the loop body must finish execution before
the first basic block in the next iteration can begin execution. Correspondingly, the
distance vector component corresponding to that loop is one, while all others are
zero. A control flow edge from basic block b; to b; with distance vector § is denoted
by (bi,b;,8).

The synchronization flow subgraph is a directed graph, G, = (N, E,), where
the nodes N are the same as in the control flow subgraph, but the edges E, link blocks
which post events to blocks which wait on the same events. In particular, (by, b,, &) e
E, if the last statement in block b, is POST(f(ev)) and the first statement in block
b is WAIT(g(ev)), where f(ev) and g(ev) are subscript expressions referencing the
same event variable ev, and § is the synchronization distance vector, whose value is
determined by the arguments to POST and WAIT statements as discussed earlier.

The synchronized control flow graph, SCG, is the combination of the control
flow subgraph and the synchronization flow subgraph: SCG = (N, E), where E is
the direct union E, U E,.

Our objective is to analyze the synchronized control flow graph (referred to as SCG
for the rest of the paper) and conclude which data dependences are preserved by the
synchronization and control flow constraints, and hence cannot lead to data races. In

the next two chapters we present two different methods to solve this problem, both
based on the SCG.

Chapter 3

Synchronization Analysis as a Data Flow Problem

In the last chapter we showed that “schedule-correctness” can be established for
parallel programs by proving that all the dependences in the program are preserved.
The objective of this section is to develop a method of proving whether a dependence
is preserved.

3.1 Execution Order

We shall develop some machinery to reason about execution orders in parallel pro-
grams. Let the loops in the program be numbered from 1 to n. Let Executed and
Completed be arrays of k+1 dimensions where k is the maximum nesting level of
the program. Every location in these arrays potentially represents an execution of a
program block. In the dimensions 1 through k, the array size is the highest possible
iteration number at that level of nesting. The size of the array in dimension 0 is the
number of basic blocks in the program, say m. Thus every possible execution of a
basic block in one execution of the program can be mapped to at least one location in
the Executed and Completed arrays in a straightforward way. All elements of these
arrays are assumed initialized to .FALSE..

We now describe a way of instrumenting the program by which the start and
termination of execution of basic blocks is registered in the arrays Executed and
Completed. These arrays will then represent the state of the program that we use to
reason about execution orders.

For each block b; in the program, perform the following:

Let k be the nesting level of b;. Let {; to lx be the iteration variables of loops
enclosing b; at nesting levels 1 to k respectively. We denote the k tuple (I, 13, ..., lx)
an iteration vector of k components as I. At the beginning of block b;, after the
wait statement if there is one, insert the statement Executed (s,) = .TRUE.. At the
end of each block b;, before the post statement if there is one, insert the statement
Completed(z, l-:) = .TRUE.. Given that [has k components, subscript set (z,f) ad-

15

16

dresses all locations in the array whose first k subscripts match with I and the last
subscript is i. Thus the statement Executed(:,I) = .TRUE. has the effect of setting
all locations in the array Executed whose first k subscripts match with I, and the
last subscript is ¢, to .TRUE.. The statement Completed(i,/) = .TRUE. has a similar
effect on the array Completed.

We define the following predicate:

Executedi(i,f) <= At time t during parallel execution z, all loca-
tions addressed by Executed(z, 1) have the value
.TRUE.

and similarly for Completed.. Ezecuted and Completed: are assumed to have the
value .FALSE. if their argument corresponds to subscripts that are not in the range of
corresponding arrays Executed and Completed respectively. We define the following
predicates in terms of Ezecuted, and Completed:.

IsEzecuted,(i,l) <= 3t: Ezecuted(i,)
IsCompleted,(i,]) <= 3t: Completed: (i, 1)

E'zecutedBcfore,((i,T),(j,ﬁ'l)) <= Vt:(Ezecuted}(j, m) = Completed}(i,1))

3.2 Preserved Sets

The preserved set of a basic block b, is the set of basic blocks that must complete
execution before b, can start executing. Since program basic blocks can have multiple
execution instances, the preserved sets can be defined for execution instances of basic
blocks, and have execution instances of basic blocks as members of preserved sets.

Definition 3.1 The Preserved set for a pair (i,1) denoting an execution
instance of block b; corresponding to iteration vector I, is defined in terms of
such pairs and possible parallel executions by:

Preserved(i,f) = {(j, ™) | Vz: (IsEzecuted,(j,) = EzecutedBefore((, m), (1, -)))}

Thus (j,m) € Preserved(z',l-) if and only if for all parallel executions z, mith
iteration of basic block b; is completed before the lth iteration of block b is begun, if
both are executed.

17

The Preserved set for a specific iteration of a basic block inside a loop nest can
potentially be of size O(fma, * n) where fm, is the product of the maximum of the
iteration ranges of the loops enclosing a basic block in the program, and n is the
number of basic blocks in the program. Moreover there are O(fmu * n) such sets for
a program. Fortunately the volume of information can be significantly reduced under
the assumption that the synchronization information available is uniformly applicable
over all iterations of a loop. This is equivalent to assuming that all components of
all synchronization distance vectors are fixed constants. In our analysis we shall use
only the synchronization information to which the above assumption applies. Ignoring
other synchronization information can make our analysis less precise but cannot make
it incorrect. The direct implication of this assumption is that we need to store only
one preserved set per basic block in the loop body. We introduce a relation to capture
facts obtained from uniform synchronization information only.

Definition 3.2 The Preserved’ sets are defined for each block b; by:
Preserved®(i) = {(j, §)|Vk: (3z: (IsEzecuted,(i, k)) = (j,k—6) € Preserved(i, k))}

Lemma 3.1 If all synchronization distance vectors in a program have con-
_ stant components then

(4, ™) € Preserved(i,) = (j, (I - m)) € Preserved®(i)

This lemma states that uniform synchronization information over loops implies
that Preserved relationship is also uniform.

We restate that a distance vector component whose value is not known is labeled
as ‘#’. The addition/subtraction of two vectors with different number of components
yields ‘*’s for all the components that are absent in one of the input vectors. Also
addition or subtraction with a ‘*’ component would yield a ‘’.

Theorem 3.2 Proving a parallel program “schedule-correct” using only in-

formation from the synchronized control flow graph is co-NP-hard.
Proof:

This theorem holds even for programs without loops and the proof is constructed
for such programs. The phrase “using only information from the synchronized control
flow graph” implies that all control flow paths are assumed possible. In this proof we

construct a program, and from it, a synchronized control flow graph which encodes
an instance of the 3 CNF Satisfiability (3SAT) problem [AHU74]. It will be shown

18

that a particular data dependence in this program may not be preserved if and only
if the 3SAT problem is satisfiable.

An instance of 3SAT can be stated as follows: let V = {v1,v2,...,v,} be a set
of boolean variables and C = {¢i,¢3,...,¢,} be a collection of clauses over V with
exactly three literals each: ¢; = I} + 17 4 I? where each I} is a variable in V or the
negation of a variable in V. The collection C is satisfiable if there is an assignment
of truth values to variables in V such that all clauses of C are satisfied (at least one
literal is assigned a value of “true”).

From the above stated instance of 3SAT we will construct a parallel program P
including statements S; and S; such that S; can precede S; in a parallel execution
of P if and only if C is satisfiable. P has two event variables called ev; and env; for
every variable v; in V. P consists of a PARALLEL CASE with two branches B,, and B,:

PARALLEL CASE
code for B,
PARALLEL
code for B,
END PARALLEL

B, consists of a sequence of n code fragments of the form:

if Vi
then POST(ev;)
else POST(env;)

followed by the statement:
S1:T=1
followed by 2 - n statements:
POST(ev;)
POST(env,)

POST(ev,)
POST(env,)

19

B, is constructed from the clause set C. B,, begins with m code fragments:
if nd}
then WAIT(el})
else if nd?
then WAIT(el?)
else WAIT(el})
here nd} are unique variables and el} is defined by:

i SV if I is unnegated variable vy
el: = 4
J env, if [} is negated variable vy

The above sequence is followed in B,, by the statement S,:
S;:8=T

Observe that P is serializable. Since B, has no wait statements, it can execute
to completion. After it has executed, all of the event variables referenced by B,, are
“posted” and so B,, can execute to completion. Note that in the sequential execution,
statement S; stores into location T and S; reads from location T and so there is a
data dependence from S; to S;. The program is correct only if this dependence is
preserved. We next show that the dependence may not be preserved if and only if C
is satisfiable.

" First suppose C is satisfiable. Let A:V — {true, false} be an assignment of
truth values to the variables in V such that C is satisfied. Let the branch B, in P
be executed until just before statement S;, taking a control flow path through the
POST(ev;) block if A(v;) = true (corresponding to program variable v; having value
true), and taking the control flow path through the POST (env;) block if A(v;) = false
(corresponding to program variable v; having value false).

Now begin executing B,,. By selection of A, each clause of C' has one true literal.
For c;, assume that [} is true under A. If I} is the unnegated variable v, A(vi) = true
and so during the partial execution of B,, the statement POST (ev,) was executed.
Therefore, for some values of nd} and ndf, the path that waits on el} is chosen. Since
I is the unnegated variable vy, el} is evy, which was posted during execution of B,.
The case in which I} is the negation of variable v is completely analogous. Hence, at
the time immediately before S, is executed, there is a path from the beginning B,
through S; along which all event variables that appear in WAIT statements have been
posted. We conclude that the dependence from S; to S; is not preserved.

To show the converse, assume that the dependence from S; to S; is not preserved
in some parallel execution. At the point that S is executed, and before S; is executed,

20

at most one of each pair of event variables evy and env, has been posted. This defines
a truth assignment A:

A(ve) = true if evi i? posted
false otherwise

The path from the beginning of B,, to S; taken in this parallel execution selects
one literal from each clause. Assume that for clause c;, the branch corresponding to
I; was taken. If l} is the unnegated variable vy, then el_';- is evy and, since control has
passed through this statement, evi must be posted. Hence A(vi) = true, establishing
that I} is true and that c; is satisfied. The case in which I} is the negation of variable
vk is completely analogous. This argument holds for each clause in C and hence C is
satisfied.

We have assumed that all execution paths are possible, so the above argument
holds for any program whose synchronized control flow graph is isomorphic to the
constructed program. Hence the problem of showing programs correct based on in-
formation in the synchronized control flow graph is Co-NP-hard.

End of Proof.

3.3 A Data Flow Formulation

We have established that the computation of preserved sets is intractable in general.
Our approach in this section to find the least fixed point of a set of dataflow equations
which compute an approximation to the Preserved’® sets.
We first state some facts that hold for parallel programs that terminate normally.
Lemma 3.3 For all pairs (z,f) denoting the lth iteration of block b; and all
parallel executions z:
Vt: (Completed: (i, 1) => Ezecuted’ (s, 1))
and
IsEzecuted (i,) => IsCompleted (k, 1)

This lemma states that if a block has completed execution, it has begun execution
and that if a block begins execution, it completes execution.

Lemma 3.4 If b; is not the root of the control flow graph, then for all
parallel executions z and all iteration vectors [with which b; executes:

Vt: (Ezecutedt (i,1) => 3 (b;, b:,8) € E.: Completed’ (j, 1 - §))

21

This lemma states that control reaches a block from one of its immediate prede-
cessors in the control flow subgraph.

Lemma 3.5 If b; is the “join” node associated with a parallel case, then for
all parallel executions z:

Vt: (Ezecuted: (i, 1) = V<bj, b.-,5> € E.: Completed (5,1 — §))

This lemma states that all cases in a parallel case construct must complete before
control continues in the parent task. é trivially consists of all zero components since
control flow edges coming into the join of a parallel case do not carry any distance.

Lemma 3.6 If &; is the first node of a sequential DO loop, then for all
parallel executions z:

Vt: (Ezecuted: (i,) = V<bj, b,-,g> € E.: Completed:(j,1 — 8))

whenever Completed(j,/— &) is defined.

This lemma states that for all iterations of a sequential loop, other than the first
one, the previous loop iteration must have finished execution.

Lemma 3.7 If b; waits on event variable ev, then for all parallel executions

5
Vt: (Erecutedy (i,1) => 3(b;, b;,8) € E,: Completed’(j, T - §))

This lemma states that if a basic block waits on an event variable, that block does
not begin execution until the event variable is posted. Only the predecessors of the
block in the synchronization flow subgraph can post this event variable and so one of
them must complete before the block can begin execution.

The above facts are enough for the following data flow equations which compute
SCPreserved sets, an approximation to Preserved® sets.

SCPreserved(i) = CPreserved(i)U SPreserved(i)

U(j.i,i)eEc (AddEdge(j,i, 5)) if b; is a “join” node;
Nisid)es. (AddEdge(j,i,8)) otherwise ; |
SPreserved(i) = () (AddEdge(j,i, 5))

(3.5)€E,

AddEdge(j,i,8) = ({(k,6+&) | ((k,§) € SCPreserved(5)) A (5 + &) < m} U {j, §})

CPreserved(i) = {

22

Here m is the range of iteration space of the loop nest enclosing basic block b,. The
term “(@ < B)” returns true if and only if all components of the term “(b - a)” are
non-negative.

The SC Preservedt sets are defined to be the least fixed point of the above system
of equations.

Theorem 3.8 The above system of dataflow equations will reach a fixed

point.
Proof:

We first prove that elements can only be added in successive computations of
the SCPreserved set of a particular node. Let SCPreserved; be the the sets ob-
tained after successively computing SCPreserved sets k times by this system of
equations over all the basic blocks of the program. Consider the computation of
SC Preservedy41(i) for some basic block ;. Suppose an element (m, &) belongs to
SC Preservedi(i) but does not belong to S C Preservedi1(i). Without loss of gener-
ality we assume that m € C Preservedi(i) , since it must belong to C Preservedi ()
or SPreservedi(i) or both. We further assume that b; is not the header node of
a loop The case where b; is a loop header can be handled analogously. Naw
(m,8%) € CPreservedi(i) = V< j,i,6 > € E.: (§% — §,m) e SC Preservedi_1(j).

By hypothesis SC Preservedi_,(t) is a subset of SC Preservedi(i) and therefore
V< 3,1, 5> ¢ E.. (§+ - g m) € SC’Preservedk(]) This is sufficient to ensure that
(§*,m) € CPreservedi,(i) and hence that (6+,m) € SCPreservediy(z). Thus we
have a contradiction which proves that SCPreserved(i) C SC Preservediy,(2) for
any k and any basic block b;. Also SCPreservedy(i) is empty, hence the proof by
induction. We have shown that elements can only be added (and not removed) in
successive computations of SCPreserved sets.

Also the total number of possible elements of a SCPreserved set is finite since the
number of distinct distance vector entries for the same basic block is bounded by the
iteration space, and the number of basic blocks is finite.

Thus we have proved that the process of computing SCPreserved sets must reach
a fixed point.

End of Proof.

23

Theorem 3.9 If SCPreserved(k) C Preserved®(k) for all blocks b, then if
b; is the “join” node for a parallel case:

CPreserved(i) = U (Addedge(j,i,g))
(34.6)€E.

C Preserved’(i)
and otherwise:

CPreserved(i) = N (Addedge(j, Z 5))
(i)€k,
C Preserved’(i)

Proof:

We prove for the case when b; is not a “join” node. The other case is analogous. Let
(m, &) be an element of CPreserved(i). We will show that (m, §) € Preserved’(i). Let
z be a parallel execution such that, during z, block b,, is executed. If no such z exists,
then (m,8) € Preserved® (1) vacuously. Let [be any iteration vector with which b,
is executed (see figure 3.1). By Lemma 3.4, at all times ¢, Ezecuted® (i, + 5) implies

T+ (6 - 8))

Figure 3.1

24

that there exist b; and &' such that <J,z,5> € E. and Completed: (I + (j, 6 — &"). By
Lemma 3.3, we have Ezecuted®. (j, I+5— 5’) Since (m, §) € C Preserved(i) and we have
a distance §' control flow edge from b; to b;, the equation to compute CPreserved set
requires that (m, 6— 5’) € SCPreserved(j) and therefore, by hypothesis, (m, 6— 6')
Preserved®(j). From this and Ezecuted(j, 1+ 6 — &") we conclude Completed® (m,).
Thus we have Ezecuted’, (i,]+ &) implies C’ompleted‘ (m,1). This holds for all times t
all parallel executions z and all iteration vectors I for which (m, l) 18 executed. Thus
we conclude (m,§) € Preserved®(i) and the theorem follows. The proof for when b;
is a “join” node is identical except that Lemma 3.5 is used rather than Lemma 3.4
and “there exists j” is replaced with “for all j”.

End of Proof.

Theorem 3.10 If SCPreserved(k) C Preserved®(k) for all blocks b; then
for every block b;:

SPreserved(i) = () (Addedge(j, s, 5))
(4.8) €k,

C Preserved’(i)

" The proof of this theorem is identical to the proof of the previous theorem except
that Lemma 3.7 is used rather than Lemma 3.4.

Theorem 3.11 For all programs P:

SCPreserved* (1) C Preserved®()

Proof:

The least fixed point of the above equations, SCPreserved*, is computed by ini-
tializing the set SCPreserved(:) for each block b; to the empty set and then repeatedly
computing CPreserved(i) and SPreserved(:) as illustrated earlier, and then replacing
SCPreserved(i) with CPreserved(i) U SPreserved(i). By the two previous theorems,
this basic step preserves the invariant that SCPreserved(i) C Preserved®(i) (which
holds trivially initially) and so we conclude the invariant holds when the least fixed

point is obtained. This theorem follows.
End of Proof.

25

3.4 Adaptation for a Practical Implementation

In this section we shall further develop the techniques of the last section so that
relevant information can be collected in reasonable time for practical programs. We
shall point out some specific situations in which the framework developed does not
do a reasonable job and discuss ways to overcome these shortcomings.

We use the example program in Figure 3.2 for illustration, which is the same
program that we used in the last chapter to show a sample synchronized control flow
graph. In this section we use the term Preserved to mean Preserved® sets, since the
difference between the two is not relevant to this discussion.

3.4.1 Synchronization Cycles

The number of distinct synchronization distance vectors which can be associated with
one basic block, in the preserved set of another basic block can be O(|m|) where |m|
is the maximum of the product of the iteration ranges of the loops enclosing a basic

~ ———> Synchronization Edge B1| POST(EV(1))
OH

B2 DOALL I

---—> Control Flow Edge

B3| C(I)=c(I)-3

POST(EV(1)) (0)5

DOALL I = 1, 100 v
C(I) = c(I) - 3 WAIT(EV(I))
WAIT(EV(I)) B4| T=T+C(I) > (1)
T=T+ C(I) POST(EV(I+1))
POST(EV(I+1)) (0) ;

END DOALL y

B5 END DOALL

Figure 3.2 Initialization Edges and Synchronization Cycles

«

26

block. We can detect and represent large classes of synchronization distances by
analyzing for synchronization cycles which would make the preserved sets compact
and their computation more efficient. We shall illustrate this informally and then
give the related formal definitions.

Consider the program in Figure 3.2. The backward synchronization edge from the
basic block B4 to itself ensures that all iterations of B4 with iteration number less
than k must complete execution before the kth iteration can start executing. This
implies that (B4, j) for all j less than the iteration range of the loop (100 here) belong
to the preserved set of B4. Here B4 constitutes a synchronization cycle and the set
of entries mentioned above can be written as (B4,1*) implying that all (B4, j) where
J is a multiple of 1 (and in the iteration range) are in the preserved set of B4.

Definition 3.3 A sequence of blocks in the SCG {b;,,b;,,...b;,_,} con-

stitute a synchronization cycle if there exist {6;0,6;;,...3},._,} such that

(j;,6;i) € Preserved(j(i+1)modulon) and there is an edge in the SCG from b;;

t0 bjii41) moduton-

A cycle in the SCG is a synchronization cycle, if for every edge in the cycle, the
source basic block is in the preserved set of the sink basic block, with some distance
vector. If b; is a member of a synchronization cycle, then (bj,g) belongs to the
preserved set of b;, where & is the sum of distance vector terms around the cycle.
Converse of this statement can be argued in an analogous manner. This yields the
following theorem:

Theorem 3.12 A block b,, in the SCG is a member of some synchronization

cycle if and only if there exists a § such that (m,8) € Preserved(m).
Proof:

(m,g) € Preserved(m) implies that b,, forms a synchronization cycle by itself
by definition 3.3. Let b, belong to a synchronization cycle. By the definition of
Preserved sets, (i, &1,) € Preserved(j) and (5, 6,) € Preserved(k) implies (z',6-;+5-;) €
Preserved(k). Applying this argument over the sequence forming the synchronization
cycle yields that there exists a § such that (m,g) € Preserved(m) which completes
the proof.

End of Proof.

The above theorem provides a method of identifying synchronization cycles dur-
ing the computation of preserved sets. We introduce a representation for a class
of distance vectors to have the ability to capture and represent the effect of such
synchronization cycles.

27

& = {né: n is a positive integer}
(i,6%) = {(3,6): 6 € &}
Theorem 3.13 (i,6*) C Preserved(i) if (i,6) € Preserved(i) for any basic
block b;.
Proof:
(1,6 € Preserved(i) implies that if basic block b; with iteration vector [is ex-
ecuted then b; with iteration vector | — § must be executed before it. Repeated

application of this argument proves the result.
End of Proof.

The data flow framework described earlier in this section can be modified to detect
synchronization cycles in a straightforward manner using Theorem 3.12. New mem-
bers SCPreserved sets that are a consequence of synchronization cycles can be added
compactly using Theorem 3.13. The union and Addedge functions have to be modi-
fied so that they understand the meaning of entries corresponding to synchronization
cycles and know how to combine them. |

3.4.2 Initialization Edges

When event variable arrays are used to synchronize iterations of a parallel loop,
some locations of the arrays need to be posted to get the loop started up. In our
SCG these lead to synchronization edges from outside to inside the loop. Without
semantic analysis, the specific locations that are posted cannot be determined, and
it is not possible to infer that these synchronization edges are meaningful only for
starting up the loop, and not for synchronization between loop iterations. We need
to treat these initialization edges as special cases so that we do not lose precision in
our analysis. Following example illustrates this issue.

Let us examine how an iterative algorithm based on the data flow equations devel-
oped in the last section would work on the program in Figure 3.2. One iteration over
the program nodes computes the fixed point shown in Figure 3.3. Note that the two
synchronization edges coming into basic block B4 have no effect on the SCPreserved
sets since the intersection of the elements due to these edges is null. Clearly it is
desirable to know that the kth iteration of basic block B4 must execute before the
(k+1)th iteration when both are defined, but this fact is not depicted in the computed
SCPreserved sets. This is because the synchronization edge from B1 to B4, which is
meant for starting up the first iteration, causes the effect of the synchronization edge

28

Block | CPreserved SPreserved | SCPreserved

Bl |¢ ¢ ¢

B2 | (<*>,1) ¢ (<*>,1)

B3 |(<*>,1),(<0>,2) | ¢ (< *>,1),(<0>,2)

B4 | (<*>,1),(<0>,2),]| ¢ (<*>,1),(<0>,2),
(<0>,3) (<0>,3)

B5 |(<*>,1),(<0>,2),]| ¢ (< *>,1),(<0>,2,),
(<0>,3),(<0>,4) (<0>,3),(<0>,4)

Figure 3.3 Computation of SCPreserved Sets

from B4 to B4 to be ignored during analysis. We need to give special consideration
to the initialization edge from B1 to B4 so that it does not hide the effect of other
synchronization.

In general, if a dependence D between two statements with & component iteration
vectors can be proved to be preserved by ignoring all synchronization edges other than
those between nodes with with k component iteration vectors, D is indeed preserved.
The only time wrong information can be obtained by ignoring a synchronization edge
is when there are multiple synchronization edges into one node and only a subset
of them are ignored. In this case such information ‘is not relevant for loop carried
dependences, although they do effect the way the loop starts up execution.

We use this idea to selectively ignore the effect of the initialization edges. In
particular, if we are interested in dependences at level k and we have multiple syn-
chronization edges coming into a basic block at level k, we ignore the effect of all the
synchronization edges whose source basic block is not at k nesting level.

3.4.3 Forcing a Polynomial Solution

Although we consider the special handling of synchronization cycles discussed in the
last section an important optimization, it does not ensure a polynomial time solution
for the data flow equations. However, in practice we expect an iterative solution

3

29

to converge rapidly in most cases. Even if the computation of preserved sets is not
completed, the relevant members of the preserved sets, which correspond to the data
dependences in the program, may already have been computed. A polynomial solution
can be forced by terminating the computation of preserved sets of a particular basic
block, or of all basic blocks, at some stage in computation determined by a heuristic
criterion. We shall briefly discuss two such criteria.

1. We can choose to stop further addition of elements to the preserved set of a
specific basic block once the number of elements in its preserved set exceeds
a predetermined maximum number. Let ¢ be the maximum preserved set size
that is chosen. Let n and e be the number of nodes and edges respectively in
the synchronized control flow graph. Each iteration of the computation of the
SCPreserved sets takes O(ce) time since the members of the SCPreserved sets of
the predecessors of each node are examined. Each iteration must add at least one
element to the SCPreserved set of some basic block until a fixed point is reached.
Since the total number of elements in all preserved sets of all basic blocks is at
most nc, the computation must reach a fixed point in O(c%en) time.

2. Alternately we can limit the maximum value of the magnitude of any component
of a distance vector during computation. This solution seems reasonable in the
wake of our experience that dependence distance vector components tend to be
small in real programs, and are usually determined during dependence analysis.
This limits the maximum number of elements in the preserved set of any basic
block to O(k?n) where k is the maximum value of any distance vector component
and d is the maximum nesting depth of the program. Thus from the last case,
the worst case complexity of computing the SCPreserved sets would be O(k%en?).
The upper bounds obtained on computation complexity discussed above may be

overly conservative and do not necessarily reflect the actual time taken for real pro-
grams. The reason for this is that our methods are general enough to do a good job
on programs with complex synchronization structure, but real programs tend to have
a relatively simple synchronization structure.

Chapter 4

Algebraic Formulation of Synchronization
Analysis

In a large class of programs, the problem of verifying whether a dependence is pre-
served can be transformed to the problem of determining whether a non-negative
integer solution exists to a system of linear equations. The transformation procedure
takes nearly linear time for the programs that can be directly analyzed in this man-
ner, and the method can be used to get precise (up to symbolic execution) results.
Solving a system of equations in non-negative integers is a form of the integer pro-
gramming problem and is known to be NP-hard. However, due to the nature of the
problem, the actual systems generated are expected to be small and easily solvable
by heuristic procedures. In this chapter we present a transformation procedure to
systems of linear equations. In the next chapter we shall discuss practical approaches
to solving the equations generated.

4.1 Formulating Systems of Equations

In this section we describe how the synchronization analysis problem for programs
satisfying certain restrictions can be transformed to the problem of solving systems of
equations in non-negative integers. In the next section we discuss the generalization
of this solution method.

4.1.1 Program Restrictions

The method we describe is directly applicable to all programs whose synchronized
control flow graph(SCG) has at most one synchronization edge and at most one
control flow edge into each block, with the exception that multiple control flow edges
may be incident on the join node of a parallel case statement. The program blocks,
as discussed in chapter 2, are a variation of basic blocks used in compiler analysis.
In the next section we discuss a modified definition of program blocks that makes it
possible to analyze a larger set of programs

30

31

4.1.2 Transformation Procedure

The solution procedure that we shall present is based on the following facts:
Lemma 4.1 Let there be a control flow edge from block b, to block b, with
distance ¢. Given that block b, with iteration vector [starts executing in a
program run, and & = 1% — I, block b, with iteration vector 7 has completed
execution.

This lemma states that if there is a control flow edge coming into a node, then a

certain iteration of the predecessor node must complete execution before the node

can start executing. The actual iteration is determined by the distance vector of the
edge connecting the two nodes.

The following lemma makes an analogous assertion for blocks connected by syn-
chronization edges:

Lemma 4.2 Let there be a synchronization edge from block b, to block b,

with distance 3. Given that block b, with iteration vector I starts executing in

a program run, and § = @ — [, block b, with iteration vector 17 has completed

execution.

The above two Lemmas are sufficient to prove the following theorem:

Theorem 4.3 A dependence from a block b,,. to block b,,; with distance &

can be proved to be preserved (using only the information in the SCQG) if and

only if there exists a path from b,,. to b,.x of distance & in the synchronized
control flow graph of the program.

Proof:

Suppose there does exist a distance & path from b,,. to b,nk. Let b, be a node on
the path and b, be its predecessor. Let the edge from b, to b, be a synchronization
edge of distance d. By Lemma 4.2, for any 7 if (g,%) begins to execute, (p, i — J) must
have completed execution. If there is a control flow edge from b, to b,, we obtain the
same result using Lemma 4.1. Since this result holds for all the nodes in the path
from b,yc to b,ink, we infer that if (sink,z") begins to execute, (src,f— 5) must have
completed execution, where & is the distance along the path from b,,. to b,,x. This is
equivalent to saying that a distance & dependence from b, to b, is preserved.

If there is no distance § path from b,,; to bynk, there is no constraint on the order
of execution of iterations of src and snk separated by a distance §. Thus, with the
information in the SCG, we cannot prove that the dependence is preserved.

End of Proof.

32

An algorithm developed by Tarjan [Tar81] can be used to find a canonical regular
expression representing all paths between any two nodes in a graph efficiently?. We
now show how the regular expression representing all paths between the source and
the sink of a dependence can be used to determine if the dependence is preserved.

Theorem 4.4 Let R be a regular expression over an alphabet consisting of

all the edges in a program’s SCG say ey, e3,...e,. Let val(e;) represent an

integer vector which is the distance vector attached to e;. There exists a set

of systems of linear equations which has a solution in non-negative integers if

and only if there exists a string in R, the value of whose symbols adds up to

a fixed integer vector §.

Proof:

We show how a set of systems of equations can be constructed, which is equivalent
to the given regular expression in the above sense. We construct a set of linear
expressions which represent all possible “values” which the regular expression can
take. Equating these to & would give the systems of equations desired.

We build the value expressions by a bottom up traversal of the parse tree rep-
resenting the regular expression. Figure 4.1 shows the possible productions used in
parsing and the action taken. The value expression of a node in the parse tree is
constructed from its children in accordance with these actions.

The set of expressions computed for a node in the parse tree is referred to as
ezpset which is in the following form:

ezpset(R;) = exp(R})U ezp(R?) U ...exp(RY})
exp(Ri) = ¢+ 17y +6z; + o Ty,

Here symbols of form cj~ represent fixed integer constants and symbols of form x;
represent variables that can take non-negative integer values. In Figure 4.1, we assume
that the expressions are in this form and are denoted by the same symbols.

We will explain and justify the actions for productions shown in table Figure 4.1.
The production R — e; assigns the value of nonterminal e; as the only expression in
expset of R. The production R — Rj assigns all the expressions in the ezpset(R;) to
expset(R) with the following modification: If there is a constant term, say c, in an
expression, it is replaced by the term zc where z is a new variable which can take any

1The algorithm takes O(ma(m, n)) on a reducible flow graph with n vertices and m edges where a
is the inverse of Ackermann’s function.

33

R—¢; ezpset(R) = {val(e;)}

R— R} expset(R) = Ui, {(ezp(R}))"} where
(ezp(Ry))" = chzp + LT, izl given that

ezp(R;) = ¢ + T, cia

R — R, + R; | expset(R) = expset(R;) U expset(R;)

R — R\.R, |expset(R) = UiZ1 7™ {exp(R:) + exp(RS)}

Figure 4.1 Computing the set of equations from a
regular expression parse tree

nen-negative value. No change needs to be made for other terms since they have a
variable term that can take any non-negative integer value, and the effect of a closure
does not affect the numerical values. The production R — R; + R, makes expset(R)
the union of expset(R;) and ezpset(R;). The production R — R;.R; takes the sum of
all pairs of terms, selecting one from ezpset(R;) and the other from expset(R;), and
makes the new terms members of ezpset(R). Note that the general form of ezpset
does not change as the new sets of expressions are constructed during parsing.

We restate that the purpose of the transformation is to check if the sum of values
of any string in the regular expression can evaluate to a given fixed constant vector
3 Equating each expression obtained in the final ezpset of the regular expression
to § yields a system of linear equations in variables which are restricted to non-
negative integer values. If any of these systems of linear equations has a solution in
non-negative integers, the original regular expression can evaluate to .

End of Proof.

34
4.1.3 An Example

We illustrate the ideas contained in the above discussion with the examplein Figure 4.2

——> Synchronization Edge

----> Control Flow Edge

S1

Paths from P to Q are represented by

coc1¢3(8163) cree U coci(€381)"socsco U cocacscy U cocacscaco co
|

Figure 4.2 Set of paths between two nodes in a SCG graph

Figure 4.2 shows the synchronized control flow graph of a code section inside a
loop nest. The set of paths from b, to b, is represented by the regular expressions:

P — g = coc1c3(s163)"creg + coca(cas1) socsco + Cocaceco + cocacscace

Since the control flow edges do not carry any distance, an equivalent regular
expression for the purpose of analyzing distances is:

N *
R,_., =s]+ 3]s

35

Let the edges s and s, have synchronization distance vectors .S-';) and S-'; associated
with them.

Let & be the distance of a dependence from b, to b,. By Theorem 4.3, this de-
pendence is preserved if and only if there is distance § path from b, to b,.The regular
expression stated above represents all the paths from b, to b,. By the construction
procedure used in the proof of Theorem 4.4 the equivalent set of distance expressions
for R, is:

Rpsq = {(@151), (2251 + S0}
Here z, and z, are variables that can take any non-negative value.

By the statement of Theorem 4.4, a distance § path from by, to b, exists, and hence
the above dependence is preserved if and only if there exist non-negative integral
solutions to either of the following two systems of linear equations:

315-"1=5‘
26+ 5 =6

Solving a system of equations in non-negative integers is known to be NP-hard.
However, this formulation would normally lead to a small system of equations. Moreover,
the coefficients of individual terms relate to components of distance vectors which are
ndrmally small integers. In the next chapter we will present practical approaches to
solving such systems.

4.2 Analyzing more Complex Programs

The method of last section can be directly applied only to programs in which each
block has at most one synchronization edge, and at most one control flow edge,
incident on it. This suggests that only a small set of programs can be analyzed by
these methods. In this section we present improvements to enable analysis of a wider

class of programs and to make the analysis more efficient.

4.2.1 Extended Blocks

The blocks of SCG defined in Chapter 2 make a fine division of the program over
which analysis procedures can be applied. We can also apply the procedure over larger
blocks of the program, if the coarser dependence and synchronization information is
sufficient for our purpose. Any lexically contiguous section of a program that satisfies
the following criterion can be a single block:

36

1. Control flow can enter the block only through the first statement in the block,
and can leave the block only from the last statement in the block.

2. Any synchronization edge entering the block must be incident on the first state-
ment, and any synchronization edge leaving the block must leave from the last
statement.

3. If there is a synchronization edge between two statements inside the block with
a distance that is not zero for a certain enclosing loop, the whole loop must be
part of the block.

Thus, internal control flow, including complete I F blocks and loops is permitted.
Internal synchronization flow is also permitted, so long as it does not hide information
relevant to the other blocks. The nesting level that we associate with a block is the
nesting level of the first and the last statement in the block, which must be the same.
We refer to the execution instances of these blocks as the execution instances of the
bounding statements. Using larger program blocks gives us a coarser partition of the
program. Since we can have statements with multiple control flow or synchronization
edges incident on them internal to a block, a larger set of programs can be analyzed.
Since the number of program nodes and edges is smaller, the analysis procedure would
run faster. The obvious limitation of the approach is that it is possible to coalesce
smaller blocks into larger blocks only if dependences between smaller blocks are not
of concern.

4.2.2 Eliminating Multiple Edgeé

We discuss a procedure by which a program having multiple edges of the same type
into a node can be transformed to another program without such nodes.

Let b, be a block in the SCG of a program. Let b, be another block which has ¢
edges of the same kind (¢ > 1) incident on it. Without loss of generality, we assume
that these are synchronization edges and label them sy, s5, ...s;. Further assume the
following conditions:

1. For each synchronization edge s; into b,, there is a path from b, to b, including

S;. .

2. There is no path from b, to any predecessor of b, which passes through any node
which has multiple predecessors of the same kind.

If these conditions are satisfied, we perform the following transformation. For
every synchronization edge s; into b,, let R; be a regular expression representing all

37

-~
-

$ S2 33

Ry = Ry s N Rp;.5, N Ry s
Figure 4.3 Eliminating multiple in-edges in the SCG

paths from b, to b, which include synchronization edge s;. Remove all ¢ synchro-
nization edges going into b,. Add a single synchronization edge from b, to b, with
a distance term R which is the intersection of regular expressions Ry, R,,...R,. We
have the following theorem:
Theorem 4.5 If the transformation procedure described above is applied
when the conditions for it are satisfied, the resulting SCG is equivalent to the
original SCG for the purpose of computing whether a dependence between
b, and any other program block is preserved.
Proof:
Suppose we are interested in finding if a dependence from b, to b,, d,, with distance
§is preserved. We shall show that the analysis of the transformed SCG will determine

.

38

that it is preserved if and only if it is possible to prove that it is preserved in the
original SCG.

First we assume that the dependence dj, is provably preserved in the modified
SCG. Suppose it is critical for the decision procedure that there exist a distance §'
path from b, to b, including a synchronization edge (only sg here). If this is not true,
the analysis is unaffected by modifying the SCG. The path expression for SR is the
intersection of all paths from b, to b, which are incident on b, via a synchronization
edge in the original SCG. A distance §' path from b, to b, via sg in the modified SCG
implies that for each synchronization edge into b,, there is a distance &' path from
b, to b, including that edge, in the original SCG. This is sufficient information to
infer that by, &' distance away must precede an execution of b,. This is equivalent to
having a single synchronization edge of distance &’ from b, to b,. Thus we effectively
have the same information in the original SCG and can prove that the dependence
under consideration is preserved.

With analogous reasoning about equivalence of paths between the original and the
modified SCG, we can show that if a dependence cannot be proved to be preserved
in the modified SCG, it cannot be proved to be preserved in the original SCG.

End of Proof.

Intersection of two regular expressions of length n can potentially yield a regular
expression of length O(n?). Thus, it is possible to handle a wider class of programs
at an additional cost. However there are cases where the transformation procedure
cannot be applied because of the conditions stated earlier.

4.3 Comparing the Two Methods

In the last chapter, we presented a method of synchronization analysis where synchro-
nization information is collected for the program by an iterative algorithm acting on
the program flow graph, analogous to data flow analysis, which we call the “dataflow”
method. In this section we shall compare it with the “algebraic” method of this chap-
ter. '

The ordering information between statements is defined by the characteristics
of the paths between them in the synchronized control flow graph. In the “data-
flow” method we iterate along program paths propagating information along the
program graph edges. At every step we do some vector arithmetic to compute the

39

new information obtained at the nodes. In many situations this leads to a simple
algorithm which terminates in a single pass yielding the necessary information for all
statement pairs.

However, loops in the synchronized control flow graph representation, (note that
this is different from a program containing loops) may result in cyclic computation and
a fixed point may not be reached in polynomial time. Although heuristic methods can
be used to terminate the algorithm after all useful computation has been completed,
a high computation cost may be involved in reaching this stage.

In the “algebraic” method, path information is computed symbolically before any
arithmetic computation is performed. Facts like repeated computation over a cycle are
captured before any actual computation is performed. This leads to the formation of
a system of equations which need to be solved to obtain necessary information. Thus
actual arithmetic is needed only for solving a standard mathematical problem and
hence can be performed more efficiently.

There are two main drawbacks to this approach. Firstly it is a two step method
and would perform slower on simple examples because of the extra overhead it causes.
Secondly, this method is directly applicable only to a subclass of problems, although
methods in this chapter can be used to alleviate the problem. However this method
avoids the potential high cost of the “data-flow” method in many situations. Overall
we consider this method to be more suitable for real applications, although our ex-
perience in this regard is limited.

Chapter 5

Solving Linear Equations in Non-negative
Integers

We showed in Chapter 4 that the problem of determining whether the synchronization
present in a program is sufficient to protect a dependence can be transformed to the
problem of determining whether a solution in non-negative integers exists for a system
of linear equations. This problem is known to be NP-hard. In this chapter we present
a practical solution technique for solving the problem. This chapter is self contained
and the methods developed can be used for solving such systems in other contexts
as well. In particular, the problem of determining whether a data dependence exists
between two array references can be transformed to this form [AK87, Wol82]. In our
methods, we take advantage of the characteristics of the systems that we are likely
to encounter. We state these as follows:
¢ The number of variables corresponds to the number of synchronization operations
relevant to a specific data dependence and is expected to be small.
o The number of equations corresponds to the number of subscript positions in the
array references causing a data dependence and is expected to be small.
o The coefficients of terms are synchronization distance vector components and are
usually small integers, very often one or zero.

We first solve the system for all (not necessarily non-negative) integer solutions.
This is often referred to as solving linear diophantine equations. If such a solution
is unique or does not exist, we determine this fact and do not need to proceed any
further. If there are multiple solutions, we obtain parametric equations that describe
the solution space. Next we determine the non-negative solution space and check
whether it is empty. If it is not empty, we use heuristic search procedures to determine
if it contains an integer solution.

40

41

5.1 Solving Systems of Linear Diophantine Equations

The theory of solving linear diophantine equations has been discussed in many texts
addressing number theory and integer programming [KHL77, GN72]. Our contribu-
tion is to present one solution method in a way that can be easily programmed on
a computer and analyze the complexity. We also discuss why we chose the specific
method that we present.

The problem can be stated as follows:

Find all integer solutions of

[A]mxn'[x]ﬂXI = [b]mx1

We first present the necessary mathematical concepts, and then an algorithm to
solve the problem.

5.1.1 Mathematical Concepts

Following are the elementary column operations on a matrix:

1. exchanging two columns

2. multiplying a column by -1

3. adding an integral multiple of one column to another column
Corresponding elementary row operations are similarly defined. We shall use elemen-
tary operations to transform a matrix to a form desirable for solving the equations.
In the rest of this section, we introduce two kinds of matrices that describe specific
elementary operation sequences that we shall use.
A transposition matrix [P],x, is a square matrix of 1s and 0s in which:

1. each row and each column has exactly one 1.

2. all the 1’s except two are along the main diagonal.
The matrix shown below, Pys is a transposition matrix of order 5. The subscript 25
signifies that the 1s in rows(and columns) 2 and 5 are out of place relative to a unit
matrix.

Py =

-0 O O O
O O = O O
o -~ O O O
O O O = O

O O O O =~

©

42

Theorem 5.1 Premultiplying a matrix A with a transposition matrix P;

is equivalent to interchanging rows i and j of A, and postmultiplying A with

F; is equivalent to interchanging columns 7 and j of A.
We show this with an example where premultiplying A with P,5 yields A with rows
2 and 5 permuted.

- - - - - -

10000 a1 Q12 a13 G4 @11 @12 G13 a4
0 0001 @1 Q22 Q3 Gz as1 asy Gs3 as4
0 01 0 0 a31 Qa32 Qa33 Q34 = asz; a3z Q33 Qaszq
00010 Q41 Q42 Gq3 Gyq Q41 Q42 Q43 Qg4
[0 1 00 0 [as1 as; as3 asq | | @21 az2 azz az |

A Subtraction matrix [S;;a]nxn is a square matrix in which:
1. all items along the main diagonal are 1.
2. S[i,j] = —a.
3. all other elements are 0.

Following is an order 5 subtraction matrix S13,0

10 —aa 00
01 0 00O
Sia=]00 1 00
00 0 10

(00 0 01|

Theorem 5.2 Premultiplying a matrix A with a subtraction matrix Sij

has the effect of reducing the ith row of A by a times Jthrow of A. Postmultiplying

a matrix A with a subtraction matrix S;;, has the effect of reducing the Jth

column of A by a times ith column of A.

We show this with an example where postmultiplying A with S;3, yields A with
every element of column 1 reduced by a times the corresponding row element in

column 3.

(@1 G2 613 ag | [1 0 —a 0 0] [a1 — a1z a2 a1z ayg]
@31 G2 Q23 Ay 01 0 00O @31 — Qa3 Gz a3 G4
a3y azz A3z Q34 00 1 00 = a3; — Q33 azz QG33 as4
G41 Q42 Q43 Q44 00 0 10 G41 — QG33 Qg2 Q43 Gyq

[@51 as2 a@s3 as¢ | |0 0O O O 1 | | @51 — @ag3 as; as3 asy |

43

Multiplication of two subtraction matrices, say Si;,, and Sita, yields a matrix
with 1s along the diagonal, a; and a; at locations Si; and Si respectively, and 0s
elsewhere. The operation of subtracting different multiples of a column of a matrix
from other columns, which can be accomplished by successive multiplication by dif-
ferent subtraction matrices, can be achieved by a multiplication with a composite
subtraction matriz constructed as described above.

Transposition matrices and subtraction matrices are examples of a more general
class of matrices called regular unimodular matrices. A regular unimodular matrix is
a square matrix whose determinant has the value (+1) or (—1). We state some of the
properties of regular unimodular matrices that are relevant for our purposes:

e the product of two regular unimodular matrices is a regular unimodular matrix.
o the inverse of a regular unimodular matrix formed of all integers always exists
and is a regular unimodular matrix.

5.1.2 Smith Normal Form

In this section we define a matrix form called the Smith normal form [Smi61] and
how a matrix can be transformed to Smith normal form using operations defined
by transposition and subtraction matrices. The theory of transforming matrices to
Smith normal form and solving systems of equations in integers using it can be found
in [KHL77, GNT72]. Here we present an algorithmic description of the method and
argue that it is a suitable first step for solving the systems of equations we expect to
encounter.

The Smith normal form of a matrix [A]mxn of rank r is a matrix D of the following
form:

d 0 - 00 --- 0
0 d; 0 0 0
[Dlmxn=1]1 0 0 d 0 --- 0
0 0 0 0 0
| 0 0 00 OJ

where dy #0, k=1,2,---r.

44

Theorem 5.3 For every matrix [A]nxn, there exist regular unimodular ma-
trices [Ulmxm and [V]nxn such that

[U]mxm-[A]an-[V]nxn = [D]mx'n

where [D]mxn is in Smith normal form
We present a procedure to compute the Smith normal form of a matrix and the
corresponding unimodular multiplier matrices.
algorithm
Input: Matrix [A]mxn
Output: Matrices [D]mxn, [Ulmxm and [V]nxn such that

[U]mxm-[A]mxn-[V]nxn = [D]mx'n

where U and V are regular unimodular matrices and D is in Smith normal form.
Initialization: D = A, U and V are unit square matrices of dimensions m and n
respectively.

Method: We use the procedure FindSmith stated in Figure 5.1, which converts a
matrix of the form D, to D,;; shown below in each step.

d 0 --- 0
0 d, --- 0
D, = : 32 U [O]rxn—r
0 0 --- d,
| [Olmerxr [Dlmerxner
(4 0 - 0 0 :
0 d - 0 0
E : [O]r+1xn-r—1
D,y =
i 0 0 --- d, 0
0 0 --- 0 drpa
[O]m—r—lxr+1 [D;'+1]m-r—lxn—r-1j

The procedure stops when D is transformed to a Smith normal form.

Complezity: We analyze the complexity of procedure FindSmith shown in Figure 5.1.
Steps 1 and 2 search a submatrix of [D]mxn in O(mn) time. Step 3 interchanges
one pair of rows and one pair of columns and multiplies corresponding permutation
matrices to unimodular matrices U and V, which is again equivalent to a row pair and

45

procedure FindSmith(D)

r=1

U and V are unit matrices of rank m and n respectively.

size(D) is the minimum of numbers of rows and number of columns in D.

We refer to the submatrix of D formed of elements with row and column number
greater than r as D,

1. If r > size(D) or the matrix D’ has all 0s STOP.
/* D is already in Smith normal form */
2. Determine minrow, mincol and minval - the location and value of the smallest
nonzero number in D..
3. Interchange row r with minrow and column r with mincol.
/* Now location D,, has value minval. */
Premultiply V' and postmultiply U with permutation matrices that reflect this
transformation.
V= Pmc‘nraw,r-v and U = U~Pm£ncol,r
4. Reduce row and column r with appropriate subtraction matrices:
Fori=r+1,n:
a; = D,; divminval
D,; = D,; mod minval
The relevant composite subtraction matrix S is an n X n unit matrix except that
Qr41; Qr42,° * - @y are the entries in row r, columns r + 1 through m, respectively.
(see earlier discussion).
V=SV
Repeat the subtraction procedure for column r and postmultiply U accordingly.
5. If row and column r of D contain all 0s, r = r + 1 GOTO step 2. Else GOTO
step 1.

end of procedure

Figure 5.1 Conversion of a Matrix to Smith normal form

a column pair interchange. The time taken is O(m + n). Step 4 performs addition of
a multiple of a column to the remaining columns in a submatrix of D and a similar
operation with rows of D. A similar operation is performed on unimodular matrices
U and V, when they are multiplied by the subtraction matrix computed above. All
of these operations take O(mn) time. Thus the overall complexity of one execution
of steps 1-4 is O(mn).

.

46

In step 5, the control goes back to step 2 if row and column r do not have all
0s, except in location D,,. If D,, became 1, the above condition must be met in the
next step. Also D,, is reduced in every step, in a manner similar to computing ged of
a set of numbers and is expected to reach 1 in logs(value) steps, where value is the
smallest element in the submatrix D] at the beginning of this reduction step. Finally,
the loop from 1-5 is executed R times, where R is the rank of the original matrix A.

Thus the complexity of computing the Smith normal form and the correspond-
ing unimodular matrices for matrix [A]mxn of rank R is O(mnRlog(value)) where
value can be approximated by the median of non-zero values in matrix A. Thus if
size is the higher dimension of A, the complexity of the operation is bounded by
O((size)log(value)).
end of algorithm

Systems of equations in integers can also be solved by transforming a matrix
to a triangular matrix form in which only row or column operations are used in
the transformation procedure. However, in those methods a new lowest element in
pivot position([D],, in earlier discussion) can be chosen only from a particular row
or column. In computing Smith normal form, the new pivot can be chosen from
anywhere in the unprocessed section of the matrix. Hence we expect this procedure
to converge faster.

5.1.3 Solving Equation Systems

We show how transformation to Smith normal form is used to solve a system of
equations in integers.

Let
[A]an-[-T]nxl = [b]m.xl (51)
be a system of linear equations for which we need to determine the integer solution
set.
Let

[D]an = [U]mxm~[A]mxn-[V]an (52)

where D is in Smith normal form and U and V are unimodular matrices.

We rewrite from equation 5.1

[U]me-[A]mx'n-[V]nxn-[V-l]nxn-[xlnxl = [U]mxm-[b]mxl (53)
[D]mxn‘[V];}(n'[z]ﬂXI = [U]MXm[b]mxl (54)

47

We define
[tlaxs = (V7] [2])nxa (5.5)

From equation 5.4 we get

[D]mxn-[t]nxl = [U]mxrn[b]mxl (56)

If r is the rank of matrix A, and hence of matrix D, then [Dmxn] is of the form
D,yx. 0

0 0
and bottom m — r rows of the column matrices being equated.

. We rewrite equation 5.6 as two equations representing the top r rows

[D7]rxr-[£]rx1 = [([U].[0])7)rx1 (5.7)
[0)m—r)x1 = (UL L) m=r)x2 (5.8)

Thus, for the original system of equations to have an integer solution
[t7)exa = (D715 ((IU-[0])] e xa (5.9)

must be formed of integers and

[((U]. 6] m=rem-r)x1 = [0)m-r)x1 (5.10)

If an integer solution exists, it can be represented by rewriting from equation 4.
[z]nxl = [V]uxn-[t]nxl (511)

We demonstrate the complete procedure of solving systems of equations in integers
with an example. Consider the following system of equations:

2y + 3z + 4z3 + bry = 3
Ty — T2 + z3 + 24 = 5
2231 + 0.'232 + 2.’33 + 5.’24 = -3

We restate the system as:

2 3451 |™ 3
X

1 =11 2 21 = s
T

2 025 3 -3

48

We have
1 0
2 345 100 ogog
A=D=|1 -1 1 2|U°=]|010]|V°=
2 0 2 0 01 0010
0 00 1

We shall transform these matrices such that
D =U* A VF

remains an invariant.

First we interchange rows 1 and 2 of D to obtain the smallest non-zero element of
the matrix in the top left corner. In the above equation we premultiply D and U by
permutation matrix P;2. We have

1 =11 2 010
D'=(2 3 45|(U'=|100]|Vi=VO°
2 025 0 01

. To get the smallest possible values in 1st column of D, we premultiply by compos-
ite subtraction matrix Sz;,2.53; 2. For the same effect on first row, we postmultiply
by 512,_1.513,1.314,2 We have

11 -1 =2
100 01 0 O
SprE=| =2 1 0| Sposr = |
9 0 1 00 1 O
00 0 1
After corresponding multiplications we get
11 -1 =2
1000 10 61 0 0
D* = 1| U=|1 =2 Vi=

o201] loai) |00 Lo
00 0 1

Again to move the lowest nonzero element of D to D,; we interchange columns 2 and
4 of D. We postmultiply D by permutation matrix P4. We get

49

100 0 1 =2 -1 1
DP=|012 5 |U%=U% V3= 0 0 01
010 9 0 0 10

0 1 00

To reduce the row and column 2 of matrix D, we premultiply by subtraction matrix
S32,1 and postmultiply by composite subtraction matrix S23,2.524,5 and obtain

1 -2 3 11

10 0 O 0 10 o 0 o0 1

D=f01 0 o0]|U'= 1 =2 0| Vt= o 0 1 o
-2 - -1 01

00 -2 -3 0 1 -2 =5

Now the lowest nonzero element in the part of D not in Smith normal form is
already in the desired position. To reduce the remaining one element, we postmultiply
by subtraction matrix S34; and get:

Lo o o 1 -2 3 8
D°=|01 0 o0o|U=U* V5= 0 0 0 1
0 0 1 -1

0 0 -2 —1
0 1 -2 -3

We interchange columns 3 and 4 to get the smallest element in the desired position
by postmultiplying by permutation matrix Ps4 and get:

10 0 0 1 -2 8 3
DP=|01 0 o0|U®=U° Vvé= 00 1 0
0 0 -1 1

0 0 -1 =2 0 1 _3 _o

Postmultiplying by subtraction matrix Sa4, brings D in Smith normal form and we
get the final forms:

10 00 0 10 1 -2 8 -13

0 0 1 =2

D=|01 00]|U= 1-20V=001 3
00 —1 0 -1 01 o 1 -3 4

And we verify that
D=UAYV

50

The top left square submatrix of D with number of rows equal to rank r of D is the
following matrix:

10 0
[Drr]3x3= 01 0
00 —1|

Its inverse can be computed easily since it is a diagonal matrix.

10 0
[Drlsxs=0 1 0
0 0 -1 |
From equation 5.9 we have
t 10 O 0 10 3 5
2 |=]01 0]. 1 -2 0. 5| =1 -7
t3 0 0 -1 -1 01 -3 6

Since it evaluates to an integer column and equation 5.10 is trivially satisfied, the
system must have integer solutions. The solutions of the system can be represented
using equation 5.11

T 1 -2 8 -13 5 67 — 13t,
| [0 0 1 -2 -7\ _ 6 — 2t
gz | [0 0 -1 3| 6| | —6+3t,
T4 0 1 -3 4 tq —25 + 4,

We rearrange the solution and replace t4 by t since there is only one parameter.

z, = -—-13t + 67
T2 = =2t 4+ 6
T3 = 3t — 6
Ty = 4 — 25

5.2 Finding Solutions in a Feasible Region

We first summarize the results of the solution procedure of the last section, in the
context of the overall problem. We started with a system of m equations (and say r
independent equations) in n variables. If r is greater than or equal to n, any integer
solution that exists must be unique, and we would have already determined whether

51

a non-negative integer solution exists. However, if r is less than n, then we have all

possible solutions for the n variables parameterized by n — r new variables which can

take any integer value. We need to determine whether there are any non-negative

integer solutions. For the example in the last section, we need to determine if the
system:

-13t + 67

-2t + 6

3t — 6

4 — 25

is feasible for some integer value of t.

VIV IV IV
o oo o

This inequality system is particularly easy to solve since there is only one variable
involved. The above system simplifies to:

t < 67/13 (1)
t < 3 (2)
t > 2 (3)
t > 25/4 (4)

The system is infeasible since (2) and (4) cannot be simultaneously satisfied.

5.2.1 Fourier-Motzkin Elimination Method

The number of variables in a system of inequalities can be successively reduced by
using Fourier-Motzkin elimination method. Any system of inequalities can then be
solved by successive reduction and back substitution. In this method, a variable is
eliminated by creating a new inequality for each pair of inequalities in which the
variable being eliminated has a different sign. We will illustrate this method with an
example. A complete treatment can be found in [Duf74]. Consider the following set
of inequalities:

0z —y+6 > 0 (1)
z+2y—6 > 0 (2)
—2z-3y+7 > 0 (3)
—4z—5y+40 > 0 (4)

52

Suppose we decide to eliminate z from this system of inequalities!. z has a positive
sign in (2) above and a negative sign in (3) and (4) above. By combining inequation
pairs (2)-(3) and (2)-(4) to eliminate z, we obtain the following system:

-y+6 > 0 (1)
y—5 > 0 from(2)and(3) (2)
3y+16 > 0 from (2)and (4) (3)
This simplifies to:
5<y<6

Thus a solution set to the inequalities does exist. We substitute the maximum or
minimum possible value of y back in the original equations so as to obtain the range
of values z can take. In thé form in which our equations are, we substitute such that
the y term has the minimum possible value. We get :

z+4 > 0 (1)
2211 > 0 2)
—4r+10 > 0 (3)

These are equivalent to the following inequality:
—-4<z<-5/2

Solving systems of inequalities by elimination tells us whether a real solution exists
to the system of inequalities. In case such a solution does exist, we can determine the
range of the values that the variables may have in the solution space. It still needs
to be determined whether an integer solution to the system exists.

Solving a system of inequalities by Fourier-Motzkin elimination techniques can
potentially increase the number of inequalities from n to (n/2)? in every stage.
Duffin [Duf74] discusses ways to lower the computation effort needed to reach a
solution. They include rules for selection of the variable to be eliminated at each
stage, and identification and deletion of redundant inequalities. He further argues
that with these modifications, Fourier analysis is a practical method to solve systems
of inequations. The number of variables and inequations that we expect in our prob-
lems is small and we expect the analysis to be fast and take only a small number of
operations.

!Heuristics for choosing a variable so as to minimize the work are discussed in [Duf74].

33

5.3 Identifying Integer Solutions

The system of inequalities obtained by solving diophantine equations defines a convex
region in n dimensional space where n is the number of variables in the parametric
equations. We are interested in determining the feasibility of an integer solution, if
the Fourier analysis shows that the solution space is not empty. In Fourier analy-
sis, we also determine the bounds in each dimension for the convex region defined.
Furthermore these bounds are tight in the sense that at least one vertex of the convex
region must be on each bounding hyperplane.

We define some terms here that we shall use in the rest of this section. An
n —rectangle is a closed convex region in n dimensions bounded by hyperplanes that
are parallel to the axis hyperplanes (that is, defined by X = constant for some co-
ordinate axis X). An n-rectangle tightly, or strictly bounds a convex region if the
the convex region is completely contained in the n-rectangle, and every hyperplane
defining the n-rectangle intersects with the convex region. The centroid of an n-
rectangle is the point with co-ordinates equal to the midpoint of the range of the n-
rectangle along each axis. If X;,X3,...X, are the co-ordinate axes and (a;, as, Qp)

and (B, B2, ...Bn) are two points in n space, a line in n dimensions between them is
defined by:

Iy —ap T2 —ap In — Qpn
Pr—an Pr—c Bn — an

5.3.1 The Case of Two Dimensions

If the system of inequalities obtained has only one parametric variable, the system can
be trivially solved as shown earlier. We first describe a solution procedure when there
are two parametric variables. Subsequently we will describe the solution method for
three or more variables by solving a set of two variable problems. We expect that
most practical situations would yield a system in two or fewer variables.

A system of inequalities in two dimensions describes a convex region in two dimen-
sions. For the present we assume that the region is finite. Fourier analysis discussed
in the last section would yield a tight bounding rectangle for the convex region. The
bounding rectangle is known to contain integer points and we want to determine if
the convex region itself has any integer points.

The following theorem holds for convex regions in two dimensions:

54

Theorem 5.4 If a finite convex region in two dimensions is tightly bounded
by a rectangle, then the centroid of the rectangle is always a part of the convex

region.
b P, be C
Py
P centroid
P ab
P,
a d
Figure 5.2
Proof:

Let C be a convex region in two dimensions and let R be the rectangle that bbu_nds
it tightly. Let abed be the vertices of the rectangle R as shown in Figure 5.2. Let
Peentroia be the centroid of R, which is also the point of intersection of the diagonals
ac and bd. Since R bounds C tightly, each of the sides ab, bc, cd and da must contain
at least one point that belongs to C. Let P,; and P, be points on the sides ab and bc
respectively, that belong to C. Since C is convex, the line segment P,; P,. is contained
in C. Also, the line segment P, P, is inside the triangle abc and must intersect the
diagonal bd at a point between b and Peentroia (which is on the diagonal ac) , say
P,. Thus there is one point on the diagonal bd between b and Pientroia that is also in
C. Similarly we can show that there is one point on the diagonal bd between d and

Peentroid, say Py, that is also in C. Therefore, since C is convex, Peentroiq is part of C.
End of Proof.

This theorem suggests that the neighborhood of the centroid is a good place to
look for possible integer solutions. We use this fact in the algorithm presented later

55

in this section. Furthermore, if none of the closest integer point neighbors of the
centroid are in the convex region, the convex region can only be of a special shape.
Specifically we have the following results:
Lemma 5.5 Let R (vertices rirarary) and R’ (vertices r)rjrir,) be rectan-
gles with parallel sides such that R’ is enclosed inside R. Let p be a point
inside R'. A set of line segments that connect a point on each side of R to p
must intersect at least two sides of R'.

™ T2

T4 T3

Figure 5.3

Proof:

We will use Figure 5.3 for illustration. Any line segment connecting p to a point
on a side of R must intersect at least one side of the rectangle R’ since all of R is
entirely outside R’ and p is inside R’. Suppose r4r} is the only side of R’ that the set
of line segments connecting p to each side of R intersect. Now p is a point between
parallel lines passing through r,r; and rjr} and a line segment connecting a point on
rirz to p cannot intersect the line through rjri. Thus r)r} cannot be the only side
of R’ that the set of line segments connecting p to each side of R intersect. Hence,
there must be at least two such sides, and that proves the lemma.

End of Proof.

56

Theorem 5.6 Let C be a convex region in two dimensions. Let R be the

smallest rectangle with sides parallel to the axes that encloses C. Assume

that the centroid of R is not an integer point and let R’ be the smallest
rectangle(square) with integer vertices that includes the centroid of R. If
none of vertices of R’ belong to C, and R is more than 4 integer units in

length and width, then C intersects exactly two sides of R'.

Proof:

Let R be the rectangle ryr,rary in Figure 5.4(i) that tightly bounds a convex region
C (not shown in the figure). R’ is the rectangle shown as rjr4rir} and the centroid of
R is an interior point of R'. The sides of R’ are extrapolated until they meet a side
of R.

Since R tighly bounds C, there is at least one point belonging to C on each side of
rectangle R. Also there is at least one point belonging to C inside R’ (centroid of R).
Since C is convex, there is a line segment from a point on each side of R to a point
inside R' which is completely contained in R. From Lemma 5.5, C must intersect at
least two sides of R'.

We now prove that C' can intersect at most two sides of R’. Suppose C intersects
three sides of R'. Without loss of generality we assume the sides are rjr}, r4r} and
ryr1. We represent this by drawing these sides with thick lines in Figure 5.4(ii). In
Figure 5.4 we will convert every line segment that we prove has a point belonging.to
C, to thick lines. Every line segment which is proved not to contain any points in C
is marked by dashed lines.

We have assumed that there is at least one point on the line segment r4r that
belongs to C. If any point on the line segment rja belongs to C, then the point
must belong to C, since C is convex. But r} is a vertex of R’ and does not belong to
C. Thus we conclude that the line segment rja does not intersect C. Similarly we
can show that line segments r{a, 7 f, r4b, rie, r4g and rid cannot intersect C. These
inferences are shown in Figure 5.4(iii).

If there is any point of C inside the rectangle gr}fry, then a line segment from
that point to a point inside R’ must be contained in C. But such a line segment must
intersect gry or r} f, and we have established that these line segments do not intersect
C. Thus there can be no points inside the rectangle gr}fry that belong to C. In
particular, line segments fry and r4g do not intersect C. Similarly we can show that
line segments dr; and rze do not contain any points belonging to C. This is shown
in Figure 5.4(iv).

r a b T
h r T ¢ ry T
g A d T4 rfﬁ
T4 f e T3
i) (ii)
a b
Y
7 /
gl ! I d gl | I I d
f e T4 f e B T3
(iii) (iv)
3 a b D)
h p "I‘i c h 1‘{ Té c
9 i) L S
1‘4‘ --------- f qe€ " T3 '
(v) (vi)

Figure 5.4 Intersection of a convex region and its enclosing rectangle

57

Since R tightly bounds C, there must be at least one point on rsry that is in
C. Since we have proved that line segments rze and fry do not contain any points

belonging to C, the line segment ef must intersect C, as shown in Figure 5.4(v).

58

Now since the sides of R are more than 4 integer units (or 4 times the sides of R’)s
line segments gry, hri, ryf, rje are all longer than one integer unit (or longer than
sides of R'). Also sides of R’ and line segments ef and gh are of unit length.

It can be seen that any line through a point on the line segment ef that does not
intersect the line segment frj cannot intersect the line through points A and ¢ at a
point more than 1 unit left (towards k) of point 7}, and hence cannot intersect the
line segment gk (see pq in Figure 5.4(v)). Thus there cannot be points belonging to C
on both line segments ef and gh, since a line segment connecting those points would
have to intersect the line segment fr} and we have proved that the line segment fr)
does not intersect C. Since we have also proved that the line segment ef has at least
one point belonging to C, the line segment gh cannot intersect C. Similarly we can
show that the line segment cd cannot intersect C. Thus we reach the situation shown
in Figure 5.4(v).

Now since the side r4r; of rectangle R must have at least one point that is in C
and the line segment r4h has been shown to not have any points belonging to C, the
line segment r1A must intersect C. Similarly we can show that the line segment r,c
must intersect C (see Figure 5.4(vi)). Thus there must be a line segment from a point
on the line segment r,h to a point on the line segment r,¢ which is contained in C.
But every such line segment must intersect the line segment ar) (and br;) which we
have proved does not intersect C. Therefore we have a contradiction.

Hence the convex region C cannot intersect three or more sides of R'. Since we
have already shown that it must intersect at least two sides of R’, the convex region
C must intersect exactly two sides of R'.

End of Proof.

Furthermore, we find that a convex region that satisfies the requirements of this
theorem must be located around one of the diagonals of the bounding rectangle.
Specifically we have the following theorem:

Theorem 5.7 Let C, R and R’ be defined as in Theorem 5.6. Let R,

Ry, R3 and R, be the rectangles formed by the extensions of the sides of R’

and the rectangle R as shown in Figure 5.5. Then under the conditions of

Theorem 5.6, exactly two diagonally opposite rectangles R; intersect with C.
Proof:

We first show that at least two of the rectangles R; intersect C. Suppose none of
the rectangles R; intersect C. Since R strictly bounds C, all sides of R intersect C.

59

™ a b T9

R, P2

7

P1i—

N

Ps/

R4 R3

T4 f e T3

Figure 5.5

Thus C must intersect each of the segments ab, cd, ef and gh, since those are the only
pé,rts of the sides of R that do not belong to any of R;. But a line segment connecting
any point on ab to any point on bc must intersect Ry, which contradicts that none of
the rectangles R; intersects C. Hence there must be at least one rectangle R; that
intersects C.

Suppose R, is the only rectangle R; that intersects C. Then C must intersect
the line segments cd and ef since those are the only parts of the sides ror3 and rary
respectively that do not belong to any of the R; assumed not to intersect C. But
a line segment connecting any point on cd to any point on ef must intersect the
rectangle R, which contradicts that R, is the only rectangle that intersects C. We
conclude that at least two of the rectangles R; must intersect C.

We now show that not more than two of the rectangles R; can intersect C. Suppose
at least three of the rectangles R; intersect C. Let the rectangles be R;, R, and Rj.
Let p1, p; and p3 be points belonging to C in the rectangles R;, R; and R; réspectively.
It is easy to see from Figure 5.5 that point r is inside the triangle p;p,ps, and hence
inside C' which is a contradiction. Hence we can have at most two rectangles R; that
intersect C. We conclude that exactly two of the rectangles R; intersect C.

-

60

™ a b T2
R, q| P2 R
2
Pl// /
'
h ™ c

Ry R3

T4 f € T3

Figure 5.6

We now show that the two rectangles R; that intersect C, must be diagonally
opposite. Suppose two adjacent rectangles R; and R; intersect C. Then R; and R,
cannot intersect C, since exactly two of R; intersect C. The line segment ef must
intersect C since that is the only part of the side rary that is not in the rectangles
R3 or Ry. Let p; and p; be points in the rectangles R, and R, respectively that
belong to C, as shown in the Figure 5.6. A line connecting p; and p, will intersect
the segment br;. Let the point of intersection be point ¢;. Also, since C is convex
and tightly bounded by R, there must be a line segment contained in C that connects
a point on the side ryr3 to a point on the line segment fe. Since the line segment
ab is shorter than the line segment br,, and the line segment er} is longer than the
line segment r3b, any line segment connecting a point on the side 7,3 to a point on
the line segment ef must intersect line segment rje, say at point ¢,. Since ¢, and
g2 belong to C and r} lies on the line connecting them, r;, must belong to C. This
is a contradiction to the conditions of this theorem. Hence two adjacent R; cannot
intersect C.

Hence, exactly two diagonally opposite R; must intersect C.

End of Proof.

61

We conclude that if a convex region (larger than a certain size) contains an integer
point, then either an integer point close to the centroid of its bounding rectangle is
inside the convex region, or the convex region region can be divided into two smaller
regions, at least one of which must contain an integer point. Based on these results,
we have the following procedure to determine if a given convex region contains any
integer points.

centroid of R

C : Convex region under consideration.

R : Smallest rectangle enclosing C

R’ : Smallest integer square enclosing centroid of R
Ry, R; : Bounding rectangles for the new problem

Figure 5.7 Nature of Convex Regions with no points in the vicinity of
the Centroid of the Bounding Rectangle

procedure: FindIntegers(C, R)

input: Convex region C' defined by inequalities in two variables, say z and y. Rectangle
R tightly bounding C.

output: Boolean value representing whether an integer solution exists in the region.

62

1. If R covers more than 4 integers in both dimensions, GOTO step 2. Otherwise,
without loss of generality, say z is the variable which can take at most 4 integer
values. For each possible integer value of z, determine the range of values y can
take. If an integer is found in the value range of y, return TRUE, else return
FALSE. This is an exhaustive search in a small space.

2. Find the centroid of R. If it is an integer point, return TRUE. Let R’ be the
smallest square with integer points as corners enclosing the centroid of R. If any
of the four corner points of R’ is part of C, return TRUE. Otherwise GOTO
step 3.

3. Find the two sides of R’ that intersect C. Determine the two rectangles R, and
R, as shown in Figure 5.7. Define C; and C; by adding the new boundaries of
R, and R, respectively, to C as additional inequality constraints. Find the new
strictly bounding rectangles R} and Rj for C; and C; respectively using Fourier-
Motzkin elimination.

Return (FindIntegers(Cy, R}) OR FindIntegers(Cs, R})).
complezity: This procedure divides the problem into two smaller problems that are
half the size. The division stops at problem size 4. Thus the maximum number of
times the above steps may have to be repeated is n/4, where n is the length of the
bounding rectangle for the original convex region C.
end of procedure

5.3.2 Solution for n Dimensions

The results obtained for 2 dimensions cannot be extended to n dimensions in general.
However, intuition suggests that the centroid of the bounding rectangle is still a good
position to potentially establish an integer point. We use this to divide and shrink the
region for analysis, until a solution is found or the problem is reduced to 2-dimensions.
procedure: NdimFindIntegers(n,C, R)

input: A set of inequalities with n variables representing a closed convex region C.
Values X[™** and X" for i = 1 to n denoting an n—rectangle R strictly enclosing

C.

output: Boolean value representing whether an integer solution exists in the region.

1. If range in any dimension does not contain an integer, no integer solutions can ex-
ist, so terminate returning FALSE. If the product of the the ranges is a small inte-

63

ger, perform an exhaustive search for solutions in the integer space. If the number
of dimensions is two, Return (FindIntegers(C, R)). Otherwise go to step 2.

2. Determine the centroid of the given n-rectangle R. Let R’ be the smallest n-
rectangle with all integer vertices that contains the centroid of R. If any of the
integer vertices of R’ belong to the convex region C, return TRUE, else GOTO
step 3.

3. Let X; be the dimension in which R contains the smallest number of integers.
If the number of integers is greater than two, GOTO step 4. Otherwise obtain
(at most) two new convex regions in n — 1 dimensions by giving occurrences
of X; fixed integer values within this range. Suppose C; and Cj are the new
regions obtained. Find the smallest enclosing n-rectangles R, and R,. Return (
NdimFindIntegers(n — 1, C1, R;) OR NdimFindIntegers(n — 1, Cs, Ry)).

4. Let x; and z, be the two values in the center of the range of values with z; <
zz that X; can take. Add additional constraints X; <= z; and X; >= z, to
C to get two new convex regions C; and C; respectively. Find their smallest
bounding n-rectangles R; and R,. Return (NdimFindIntegers(n, C;, R,) OR
NdimFindIntegers(n, C, R;)).

end of procedure

~ The steps of these solution procedures are organized so that most common cases
can be handled quickly, but the less common cases are also handled. It is not possible
to do an accurate complexity analysis of this solution procedure since it is dependent
on numerical values. However, we expect the procedure to be efficient for problems
with very few variables and small ranges, which is what we expect in our applications.

5.3.3 Handling Infinite Regions

The solution procedures so far assumed that the ranges for all variables are finite. This
may not be true in general. An infinite convex region would include zero or infinite
integer points. It is obvious that an infinite convex region bounded by diverging
hyperplanes would include infinite integer points. A necessary condition for an infinite
convex region to have no integer points is that there are parallel hyperplanes bounding
the region (with an infinite thin strip with no integer points between them). We have
the following lemma:

Lemma 5.8 An infinite size convex region must have infinite integer points
unless at least two of the hyperplanes defining it are parallel.

64

For our analysis, we check if any of the hyperplanes defining the convex region are
parallel. If no two hyperplanes are parallel, no further analysis is required. If parallel
hyperplanes do exist, we generate heuristic values for bounds whenever actual values
are not available. A heuristic value that we use for bounds is the largest coefficient
in the system of inequations. This is supported by the fact that the occurrence of
integers inside infinite convex regions is usually cyclic along the axes in which it is
infinite, and the lengths of cycles are determined by the magnitude of the integers in
the inequation set. A more exact analysis could be performed to determine a better
defined bound, but we do not have evidence that would suggest that our heuristic is
inadequate.

Chapter 6

Other Synchronization Mechanisms

In this chapter we discuss the potential and the limitations of extending our methods
for analyzing simple event variable synchronization to other synchronization mecha-

nisms.

6.1 Event Synchronization with CLEAR statement

In previous chapters, we have assumed the absence of the CLEAR statement, which has
the effect of resetting the value of an event variable to clear. The CLEAR statement
is commonly used to reuse an event variable for synchronization. In this section we
discuss how the CLEAR statements affect program synchronization behavior, and their
relevance to our analysis.

* If CLEAR statements are ignored when using the methods of the previous chapters
to identify potential data races, all true data races will still be recognized. However,
some of the potential data races can be proved infeasible by analyzing the use of
CLEAR statements. Thus, analysis of CLEAR statements is a critical optimization to
reduce the number of false data races reported.

In our synchronized control flow graph, we have an edge from every POST statement
on an event variable to every WAIT statement on the same variable, implying that any
of the POST statements can set the value of the event variable to posted and enable
execution past the WAIT statement. However, if we can prove that a CLEAR statement
must execute after a POST statement but before a corresponding WAIT statement
(whenever both are executed), that particular POST statement cannot be responsible
for triggering the execution at that WAIT statement, and hence the synchronization
edge between this POST-WAIT pair can be removed. This makes the analysis using the
SCG more accurate’.

Inside loops, analysis of CLEAR statements can often help attach more precise synchronization
distance vectors, which is in effect analogous to reducing the number of POSTS that can trigger
execution past a WAIT.

65

66

PCASE

X=2 WAIT(EV)
Sp

POST(EV) Y=X

PEND

S.| CLEAR(EV)

PCASE

X=5 WAIT(EV)
Sw

POST(EV) Z=X

PEND

Figure 6.1 A program using a CLEAR statement. The synchronization edge
from block S, to block S, can be eliminated due to the CLEAR statement in
block S..

Let ev be a scalar event variable. Let S,, S, and S. represent statements
POST(ev), WAIT(ev) and CLEAR(ev) respectively in a program. Suppose we can
prove that if S, is executed before S,, in a program run, then S, must execute after
Sp and before S,,. If this is true, then the value of ev posted by S, would certainly
have been cleared at least once before S, executes, and hence S, cannot cause a
thread of execution waiting at S,, to resume execution. Thus, the synchronization
edge from S, to S,, is not of significance and can be removed (see Figure 6.1). These
facts can be stated formally as the following lemma, which follows from the semantics
of the event variable operations:

Lemma 6.1 Let S,, S, and S. be POST, WAIT and CLEAR statements acting

on the same scalar event variable ev, respectively. If S. can never execute

before S, and must execute before S,, whenever S, executes, then there is no

synchronization relationship between S, and S,

67

Since execution orders in parallel executions are captured by preserved sets defined
in Chapter 3, we have the following theorem:

Theorem 6.2 Let Sy, S,, and S, be POST, WAIT and CLEAR statements acting
on the same scalar event variable ev, respectively. Given that

p € Preserved(c)

c € Preserved(w)

There is no synchronization relationship between S, and S,.

Proof:
Immediate from the definition of preserved sets and Lemma 6.1.

End of Proof.

Theorem 6.2 defines a criterion for eliminating synchronization edges after pre-
served sets have been computed. Eliminating synchronization edges and recomputing
would make the preserved sets more precise. This process can be repeated to improve
the precision of preserved sets, until a fixed point is reached.

6.2 ADA Rendezvous

The methods developed in this thesis can be used to analyze statement orders in
programs using rendezvous synchronization as defined in the ADA language. We first
informally introduce rendezvous synchronization and then present our approach to
analyzing programs using this synchronization model.

Parallel tasks synchronize by issuing entry call and accept instructions. Figure 6.2
shows two simple ADA tasks. A task T1 issuing an entry call to another task T2 of
message type P suspends execution until task T2 executes an accept statement of the
same message type P. Similarly a task T2 executing an accept statement of message
type P suspends execution until some task executes an entry call to T2. After the
rendezvous completes, both tasks involved can continue execution. Exactly two tasks
synchronize in a rendezvous. If multiple tasks are waiting to rendezvous with the same
accepting task, the semantics of ADA dictate that the system non-deterministically
selects one of them.

We can construct a synchronized control flow graph for programs with rendezvous
synchronization by adding a pair of synchronization edges between statements that
can potentially rendezvous. Any statement that executes an entry call to task T of

68

Task T1 Task T2

Task T1 a, begin begin a,
begin

i=1

T2.P b i=1 accept P | b,

j=2

T2.P
end < T2.P x=1i+3|¢C
Task T2 d; j=2 accept P | d,
begin

accept P

x=1+3 er | T2.P y=i+4| e

accept P

y=3j+4
end fi end end fa

Figure 6.2 Rendezvous Synchronization in ADA

type P is assumed to potentially rendezvous with any accept statement in task T of
type P. Having a pair of synchronization edges between two statements potentially
involved in a rendezvous leads to ambiguous conclusions regarding the execution order
of the specific statement pair. In particular if S,, and S,, can potentially rendezvous,
we may conclude that each of them is in the preserved set of the other. However,
preserved sets computed for blocks in the program that do not contain an accept or
an entry call do not have any ambiguity. The information obtained can be used to
identify potential data races.

In Figure 6.2, we can infer that ¢ is defined in block b, before it is used in block ¢,
by computing the preserved set for block ¢;. However we cannot directly infer that
J is defined in block d; before it is used in block e;. The reason is that the pair of
synchronization edges between ¢, and d; represent an impossible rendezvous, and the

69

presence of synchronization edges between them reduces the precision of our analysis.
The following theorem can be used to eliminate impossible rendezvous:

Theorem 6.3 Let S, and S,, be program blocks that are potentially in-

volved in a rendezvous. Further, for every control flow predecessor S.req of

Sy, if

Sr, € Preserved(Sepred)

then the rendezvous between S,, and S,, is an impossible rendezvous.
Proof:

If S,, is guaranteed to complete execution before any control flow predecessor
of S,, begins execution, then clearly S,, must complete execution before S,, begins

execution. This implies that S;, and S,, cannot be involved in a rendezvous.
End of Proof.

We can use this theorem to eliminate the synchronization edges between nodes c;
and d; (and between nodes f; and b,) in Figure 6.2. Analysis after eliminating these
edges would conclude that j must be defined in block d; before it is used in block e;.

Note that the elimination of impossible rendezvous is achieved in linear time after
the preserved sets have been computed. However eliminating some impossible ren-
dezvous can lead to collection of more precise information, which in turn may lead to
labeling of other potential rendezvous as impossible. Thus the process can be repeated
to achieve better precision. We do not have sufficient knowledge of characteristics of
ADA programs to know how effective this method is for real programs, and how it
compares with other algorithms to eliminate impossible rendezvous [Tay83b].

6.3 Semaphores

Use of semaphores is a common synchronization mechanism in parallel and concurrent
programming. A semaphore is an integer variable on which only the following two
atomic operations are defined.
P(S): while S < 0 do skip;
S=85-1

V(s):S =5+ 1

Semaphores can be used to ensure mutual exclusion.

70

loop
P(mutex)
critical section
V(mutex)
non critical section

forever

If a set of processes is sharing the above code, and the semaphore mutex is ini-
tialized to 1, the semaphore operations ensure that only one process can execute the
code in the critical section at any given time. Using semaphores for mutual exclusion
is not directly relevant to our analysis methods and the discussion of other mutual
exclusion mechanisms in the next section is relevant here.

Semaphores can also be used to enforce statement execution ordering. If a process
p1 has the statement sequence:

S1
V(synch)
and process p; has statements:
P(synch)
. Sl
S, will execute only after S; if the semaphore synch is initialized to 0 and no other
statements act on it.

When binary semaphores are used to enforce ordering of statements, methods in
this thesis can be used to analyze their effect on program execution. We shall show
that a binary semaphore can be interpreted in terms of operations on event variables.
A binary semaphore is a semaphore that can take values 0 and 1 only. For our analysis
we translate the operations on a binary semaphores to event operations:

P(semaphore) : WAIT(event)
CLEAR(event)

V(semaphore) : POST(event)

Although the corresponding statements are not semantically equivalent, (semaphore

P operation is atomic, while the sequence of WAIT and CLEAR statement used to mimic
it is not) the information collected by analyzing equivalent event operations is still
correct. Thus, we can determine execution ordering enforced by semaphore operations
by analyzing an equivalent program with event variables. However, when semaphores

71

are used as means of enforcing mutual exclusion, we cannot derive any useful infor-
mation.

6.4 Locks and Critical Sections

Locks and critical sections are synchronization mechanisms used to ensure mutual
exclusion between processes for access to shared code or data. These synchronization
mechanisms do not directly enforce any ordering between statements, and thus do
not cause any dependences to be preserved. The information contained in them is not
of any direct significance for our analysis procedures, whose objective is to identify
the program dependences that are protected by synchronization.

However, using mutual exclusion mechanisms with other synchronization mecha-
nisms can enforce execution orders. For instance, if we can establish that any state-
ment in a program section S; protected by a lock is executed before a statement in
another program section S; protected by the same lock, we can infer that all of S
must be executed before any part of S; can begin execution. We have not investigated
this effect and are not aware if it is of significance in real applications.

Analysis of mutual exclusion mechanisms can be used to help development of
applications in other ways. Static analysis can reveal when accesses to a particular
variable are not guaranteed to be mutually exclusive. This could result from incorrect
use of locks or critical sections. Also, when concurrent accesses to a particular variable
are made mutually exclusive (say by using critical sections), often the actual order
of execution is not critical. A programming environment can use this information to
selectively ignore dependences that are irrelevant for program analysis.

6.5 Summary

The analysis methods in this thesis were intended for use on programs with event
synchronization. However, we have shown that the methods have the potential to
be useful for several other models of synchronization. These methods can be used to
discover useful information about programs that use synchronization to constrain pos-
sible execution orders. In addition to event synchronization, these include rendezvous
and semaphore synchronization. We have not studied these synchronization mecha-
nisms in detail, but we do present evidence that suggests the fundamental similarity
in analyzing these synchronization mechanisms.

72

Synchronization mechanisms enforcing mutual exclusion do not have information
pertaining to program dependence and are not relevant to our analysis. However,
certain anomalies associated with enforcing mutual exclusion are detectable by static
program analysis and should be reported.

-

Chapter 7

Conclusions and Future Work

7.1 Research Contribution

In this thesis we have developed a framework for analyzing synchronization in pro-
grams for a shared memory multiprocessor. We presented an algorithm to analyze
“schedule-correctness” of parallel programs by stating the problem in a data flow
framework. We presented another algorithm to transform the “schedule-correctness”
problem to the problem of finding a non-negative integer solution to a system of
equations. We have presented a practical way of solving such systems using existing
known mathematical methods, and heuristic techniques developed in the thesis. We
have characterized the types of synchronization mechanisms that can be analyzed by
our methods.

7.2 Significance of Research

The immediate problem that we have solved is finding the set of potential anomalies
in a parallel program by identifying data dependences that can lead to data races.
If no such anomalies are found, the program is “schedule-correct”. We consider this
information to be of significant importance to a programmer developing a parallel
program, or a programmer trying to convert an existing sequential program to parallel
form. The set of potential anomalies is also a starting point for a debugger for parallel
programs. If a set of potential anomalies can be established statically, a debugger
to detect parallel access anomalies needs to trace references only to relevant memory
locations, and not to all of the shared memory.

The algorithms developed in this thesis have other applications in a parallel
programming environment. Optimization and transformation of explicitly parallel
programs requires that the programming environment understand the meaning of
synchronization in parallel programs. Mechanisms to automatically insert necessary

73

74

synchronization, and to remove redundant synchronization statements, can use the
analysis presented in this thesis as their basis.

We consider this thesis to be a significant step towards increasing the power and
flexibility of parallel programming environments.

7.3 Implementation

We have developed a prototype implementation of synchronization analysis in the con-
text of the ParaScope programming environment being developed at Rice University.
In ParaScope a programmer can examine the data dependences which may cause
potential data races if a program loop executes in parallel. This analysis is sharp-
ened with synchronization analysis. In particular, a programmer can find which data
dependences are protected by the synchronization in the program, and hence cannot
lead to data races. Figure 7.1 and Figure 7.2 give an illustration of the implementation
of our synchronization analysis. The interface is that of the ParaScope editor.

The implementation has several limitations, partly because of the environment
in which it is developed. Since ParaScope computes dependences only for individual
loop nests (and not across loop nests), synchronization analysis can be applied only
to statements inside the same loop nest. Synchronization and dependence distance
vectors are assumed to have all simple constant components, although it is possible
to extend the analysis to some other cases. Finally the analysis is not integrated
with other transformations and is only used to present advisory information on which
dependences are protected.

Our implementation has convinced us that synchronization analysis is extremely
useful in developing parallel programs. Figure 7.2 demonstrates that the effect of even
relatively simple use of synchronization can be tricky to understand. However we have
not done extensive experimentation. It remains to be established whether the payoffs
of static analysis methods are worth the cost of the analysis. Some of the methods
developed in this thesis are polynomial approximations to NP-hard problems. We
believe that our methods would be sufficient to handle practically all the cases in
real programs, but we have only limited experimental evidence to support this claim.
Also, it is not known if simpler and less accurate methods would do as good a job
in practical situations. All these issues can be resolved only by collecting empirical
results by extensive experimentation.

75

7.4 Synchronization in Parallel Programs

We made an effort to understand what synchronization patterns are common in real
programs and whether they are analyzable by the methods presented in this thesis.
Many real programs could not be run through our prototype analysis tool because
of the limitations of the tool or the syntactic differences between parallel Fortran
dialects. However our main objective was to verify the applicability of our methods
in broad terms, so we manually analyzed codes whenever necessary. The discussion
in this section is based on about 10 benchmark programs obtained from Los Alamos
National Labs, other literature on parallel program analysis (particularly [Hen87])
and conversations with several scientists involved in development of parallel scientific
applications.

The first observation was that the use of event synchronization is not very com-
mon even when it is supported in a language. The main reason was that most of the
parallelism in user applications was exploited in a straightforward way using parallel
case, parallel loop or analogous constructs. The other reason was the programmer’s
reluctance to use event variables. Often programmers would use locks and additional
variables to simulate operations on events, even though the language directly sup-
ported event operations. We discovered that programmers often found event variable
operations complex and hard to use. Another reason for avoiding event synchroniza-
tion was the apparent or real belief that it is an inefficient method of synchronization.

We believe that use of event operations is a natural way to implement synchroniza-
tion and lack of widespread use just reflects the infancy of parallel computing. Event
operations can be used to implement software pipelining which is an important source
of additional parallelism. There is no reason why use of event operations should be
less efficient than using alternate mechanisms to do the same work, although specific
implementations may lead to such behavior.

The use of event synchronization in programs examined was always very simple.
Analysis of these programs leads to fairly simple synchronized control flow graphs.
However, often the complete meaning of a program can be understood only with
some symbolic analysis. For instance, in one program that we analyzed, a set of tasks
would start executing concurrently and each of them would increment a counter before
terminating. There was code inside the tasks to ensure that the last task to terminate
would post an event variable, effectively implementing a barrier. Clearly the complete
meaning of this construction cannot be inferred without symbolic analysis. In other

76

instances we observed that locks were used to implement event style synchronization,
again requiring symbolic execution to make meaningful inferences.

Overall we feel that the methods in this thesis are sufficient to solve the problem
statement that we presented, which is to analyze parallelism and synchronization
using only the synchronized control flow graph. However, the solution of this problem
may not be sufficient for us to verify accurately whether a programs execution is
guaranteed to be schedule-correct and to identify the potential data races. Additional
symbolic analysis can be important to solve the overall problem.

7.5 Future Work

The analysis procedures developed in this thesis can be extended and applied to
several related problems.

7.5.1 Other Synchronization Mechanisms

This thesis develops methods to analyze event style synchronization. In Chapter 6 we
discuss how we can do synchronization analysis for ADA rendezvous, semaphores,
and other synchronization mechanisms. The discussion is preliminary and a more
thorough analysis is needed. Our analysis is oriented towards numerical applications
where parallelism is essentially a performance issue and its applicability to environ-
ments that are oriented towards inherently parallel or realtime applications is not
known.

7.5.2 Removal of Redundant Synchronization

In Chapter 7 we presented how synchronization edges in a program representation
can be removed when they are not meaningful due to the presence of CLEAR state-
ments. Synchronization statements are redundant when the execution ordering that
they enforce is already enforced by other synchronization statements. By removing
a synchronization edge, and analyzing the program to determine if the source of the
edge is guaranteed to execute before the sink, we can detect redundant synchroniza-
tion statements. However, repeating this analysis for each synchronization edge can
be overly expensive. Also the order in which redundant synchronization edges are
removed may be critical to the overall effectiveness of this procedure. It would be
useful to have a general purpose algorithm to minimize synchronization in a whole
program.

7

7.5.3 Insertion of Synchronization

A programmer would like to have just the right amount of synchronization in pro-
grams. It should be enough to ensure correct execution, but with minimal runtime
overhead. Optimal synchronization is a function of machine parameters, particularly
the timings of various machine operations. However, in many cases it can be stat-
ically determined which of the different possible correct synchronization structures
will result in the smallest execution overhead. A parallel programming environment
should be able to advise and help the programmer in managing synchronization.

The simplest way to ensure that a program is schedule-correct (relative to se-
quential execution) is to synchronize each data dependence. This can be achieved
by inserting a POST statement after the source of the dependence and a correspond-
ing WAIT statement before the sink of the dependence. This would ensure maximal
parallelism (under the assumption that each data dependence must be preserved)
but may have a high and unreasonable synchronization overhead. Other strategies
may yield low synchronization overhead, but with some loss of parallelism. Midkiff
and Padua [MP86] suggest a way of synchronizing DO loops. Wolfe [Wol87] dis-
cusses various strategies for inserting synchronization for a variety of synchronization
canstructs. These are mainly based on inserting sufficient synchronization and then
removing synchronization that is considered unnecessary by examining the loops for
some particular synchronization pattern. Li and Abu-Sufah [LAs85] present a similar
approach for synchronization by locks.

These methods to insert synchronization look for specific patterns for optimizing
synchronization. The results of this thesis can be used to develop a general framework
in which the effect of adding and deleting synchronization can be examined in the
context of correctness and efficiency. It is desirable to have a general mechanism to
find a set of synchronization points that would satisfy a set of dependence constraints
with minimal execution overhead.

7.5.4 Program Transformations

The process of parallelizing a program usually involves many program transforma-
tions. These transformations may be done manually by the programmer, or auto-
matically by a parallelizing compiler. Most algorithms used for these transformations
assume that programs do not contain synchronization. Extending these algorithms
to accept “partially parallel” programs that contain synchronization would add more

78

power to a parallel programming environment. We believe that this thesis provides a
foundation for research in this direction.

7.5.5 Synchronization in Distributed Memory Multiprocessors

Distributed memory multiprocessors use message passing for synchronization. A pro-
cess issues a send(msg) instruction when it has data to send to another process. A
process executes a receive(msg) to obtain data from another process. These message
passing primitives may be blocking or non-blocking, depending on the implemen-
tation, leading to synchronous or asynchronous communication. Send and receive
primitives are used to exchange data between processes running on different proces-
sors and provide synchronization between them.

Communication costs are an important execution overhead on distributed memory
multiprocessors. The analysis of synchronization due to process communication is
similar to the analysis of synchronization on a shared memory machine. The results of
analysis of interprocess communication can be used for debugging, and for optimizing
the communication to minimize execution overhead. We believe that our methods can
be extended and brought to use in the distributed memory model of programming.

7.5.6 Combining Static and Dynamic Analysis

This thesis is geared towards statically finding memory references that may lead to
data races during execution. Methods have been developed to identify data races on
the fly during execution [Sch89, DS90] and by tracing memory references [EGP89,
MCB88]. One of the drawbacks of these dynamic debugging methods has been the high
overhead associated with collecting information at runtime. Static analysis can be
used to reduce the overhead of dynamic methods by finding a small set of potential
data races before execution begins [HKMC90]. Only information that is relevant to
these potential data races need be collected during execution. Thus combining static
and dynamic analysis can be a powerful and efficient approach to identifying data
races in parallel programs.

;é:' i
b
Z 8] Rn Database
e
i from: !/lexuplulpaporlwuntl]
o v
to: JIF j B
S 3 # = /rn/Database/
bR d oxup'lo:(?rojcgt)-- =2 | XS
3z S paper(Folder)--
i.: controlflou("odu!o)) E-m
3 distribution(Module
distribution(X | e |
3 aultiply(Module) D
2 nevque(Module)
norec2(Module) create
2 :::1:&::‘:’::;“.”@ ParaScope Editor examples/paper/event
z:::-::::::g:ﬁ:;. [edit I search I analyze |var1.lnn I tnnafonl parallel l
3 fbag(Project) c A set of loops to demonstrate that Parascope can understand 4
3 fan(Project) c sisple POST-WAIT synchronization stateaents. $
hood(Project) c
johnac(Project) prograa main
H kats(Project) dimension 8(188), b(188), c(188)
5 - disension ev1(188), ev2(168), ev3(188)
. [Tens ¢ A simple single statesent carried dependence
e rreres st protected by synchronization
0 waten datadd
Lcuston call post(evi(1)) i
|ao t = 2, 28
call wait(evi(i - 1)) ;
& 2(1) = a(1 = 1) - 2
call post(evi(i))
; enddo]
o v
o | el | P
D
9 prev loop | next loop | prev dep next dep £11ter delete
type sre(___) sink(bold) ~ vector level block
: can call vait(evi(i - 1)) -
Irue a(1) (1 - 1) 1) - 1
: tall call post(evi(1)) B

Figure 7.1 View of Synchronization Analysis in ParaScope

79

B
i
i

&
b

oo

20050090

..

ParaScope Editor examples/paper/event

search analyze variables | transform

OO0

Dependence Distance = 2, Synchronization distance =
Since synchronization "edge" is backward, every
multiple of 1 distance is protected

call post(ev2(2))
do j = 3, 38
b(i) = a(j) - 3
call uaitEevZEj); 1))
call post(ev2(j
c(j - 1) = b(§ =2)+ 4 Dependence 1s protected

enddo

E] message

ParaScope Editor examp les/paper/event EI
edit search analyze variables | tran

Above loop with a different synchronization schenme.
Synchronization "edge" is distance 1, forward
It does not protect a distance 2 dependence

call post(ev3(2)) g s
do k = 3, 38
b(k) = a(k) - 3
call post(ev3(k))
call wait(ev3(k - 1))

Dependence 1s not protected

A
1

c(k = 1) = b(k - 2) + 4
éenddo
print *, a, b, ¢

Figure 7.2 Example to demonstrate the effect of Event
Synchronization on Data Dependences

80

Bibliography

[ABKP86] J. R. Allen, D. Biumgartner, K. Kennedy, and A. Porterfield. PTOOL:

[AHUT4]

[AKS7]

[AMSS]

[ASUS6]

[BBC+88)

[BKK+89]

[CCH*87]

[DS90]

A semi-automatic parallel programming assistant. In Proceedings of the
1986 International Conference on Parallel Processing. IEEE Computer
Society Press, August 1986.

A.V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.
R. Allen and K. Kennedy. Automatic translation of FORTRAN pro-
grams to vector form. ACM Transactions on Programming Languages
and Systems, 9(4):491-542, October 1987.

W. F. Applebe and C. E. McDowell. Anomaly reporting — a tool for
debugging and developing numerical algorithms. In First International
Conference on Supercomputers, Florida, December 1985.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, Reading, Massachusetts, 1986.

V. Balasundaram, D. Biumgartner, D. Callahan, K. Kennedy, and
J. Subhlok. PTOOL: A system for static analysis of parallel programs.
Rice COMP TR88-71, Dept. of Computer Science, Rice University, June
1988.

V. Balasundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Subhlok.
The parascope editor: An interactive parallel programming tool. In Pro-
ceedings SUPERCOMPUTING ’89, Reno, NV, November 1989.

D. Callahan, K. Cooper, R. Hood, K. Kennedy, L Torczon, and S. Warren.
Parallel programming support in ParaScope. In Proceedings of the 1987
DFVLR Conference on Parallel Processing in Science and Engineering,
Koln, West Germany, June 1987. Available as Rice University, Dept. of
Computer Science Technical Report TR87-59.

A. Dinning and E. Schonberg. An empirical comparison of monitoring
algorithms for access anomaly detection. In Proceedings of the Second

81

[Duf74]

[EGP89)

[EPSS]

[FIS85]

[GGGJI8S)

[GN72]

[Hen87]

[HKMC90]

[KHL77]

[KKP+81]

[KMRS7]

82

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 1-10, Seattle, WA, March 1990.

R. J. Duffin. On fourier’s analysis of linear inequality systems. Mathe-
matical Programming Study, 1:71-95, 1974.

P. Emrath, S. Ghosh, and D. Padua. Event synchronization analysis for
debugging parallel programs. In Proceedings SUPERCOMPUTING ’89,
pages 580-588, Reno, NV, November 1989.

P. Emrath and D. Padua. Automatic detection of nondeterminacy in
parallel programs. In Proceedings of the ACM SIGPLAN and SIGOPS
Workshop on Parallel and Distributed Debugging, pages 89-99, Madi-
son,WA, May 1988.

P. O. Frederickson, R. E. Jones, and B. T. Smith. Synchronization and
control of parallel algorithms. Parallel Computing, (2):255-264, 1985.
V. Guarna, D. Gannon, Y. Gaur, and D. Jablonowski. Faust:an environ-
ment for programming parallel scientific applications. In Proceedings of
Supercomputing’88, pages 3-10, Orlando,FA, November 1988.

R. Garfinkel and G. Nemhauser. Integer Programming. John Wiley and
Sons, New York, 1972.

L. Henderson. The usefulness of dependecy-analysis tools in parallel pro-
gramming: Experiences using PTOOL. Technical Report Preprint LA-
UR-87-3135, Los Alamos National Laboratory, September 1987.

Robert Hood, Ken Kennedy, and John Mellor-Crummey. Parallel pro-
gram debugging with on-the-fly anomaly detection. In Supercomputing
1990, November 1990. (to appear).

A. Kaufmann and A. Henry-Labordere. Integer and Mized Programming.
Academic Press, New York, 1977.

D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Depen-
dence graphs and compiler optimizations. In Conference Record of the
Eigth ACM Symposium on the Principles of Programming Languages,
pages 207-218, Williamsburgh, VA, January 1981.

C. Koelbel, P. Mehrotra, and J. Van Rosendale. Semi-automatic domain

‘decomposition in BLAZE. In S. K. Sahni, editor, Proceedings of the 1987

International Conference on Parallel Processing, pages 521-524, August
1987.

[KucT78]

[LAs85]

[LMC87)

[MC8S]

[MP86]

[MRS5]

[Par88]

[Sch89]

[Smi61]

[Tar81]
[Tay83a]
[Tay83b]

[Wol82]

83

D. Kuck. The Structures of Computers and Computation. John Wiley
and Sons, New York, 1978.

Z. Li and W. Abu-sufah. A technique for reducing synchronization over-
head in large scale multiprocessors. In Proceedings of the 12th Interna-
tional Symposium on Computer Architecture, May 1985.

T. LeBlanc and J. Mellor-Crummey. Debugging parallel programs with
instant replay. IEEE Transactions on Computers, C-36(4):471-482, April
1987.

B. P. Miller and J. Choi. A mechanism for efficient debugging of parallel
programs. In Proceedings of the ACM SIGPLAN 88 Conference on Pro-
gram Language Design and Implementation, pages 135-144, Atlanta,GA,
June 1988.

S. P. Midkiff and D. A. Padua. Compiler generated synchronization for
DO loops. In Proceedings of the 1986 International Conference on Parallel
Processing, pages 544-551, August 1986.

P. Mehrotra and J. Van Rosendale. The BLAZE language: A parallel
language for scientific programming. Technical report, ICASE, NASA
Langley Research Center, 1985.

The Parallel Computing Forum. PCF Fortran: Language Definition, 1
edition, August 1988.

E. Schonberg. On-the-fly detection of access anomalies. In Proceedings
of the ACM SIGPLAN 89 Conference on Program Language Design and
Implementation, pages 285-297, Portland, OR, June 1989.

H. Smith. On systems of linear indeterminate equations and congruences.
Philosophical Transactions of the Royal Society of London, A(151):293-
326, 1861.

R. Tarjan. Fast algorithms for solving path problems. JACM, 28(3):594-
614, July 1981.

R. N. Taylor. Complexity of analyzing the synchronization structure of
concurrent programs. Acta Informatica, 19:57-84, 1983.

R. N. Taylor. A general purpose algorithm for analyzing concurrent pro-
grams. Communications of the ACM, 26(5):362-376, May 1983.

M. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis,
Dept. of Computer Science, University of Illinois at Urbana-Champaign,
1982.

84

[Wol87] M. Wolfe. Multiprocessor synchronization for concurrent loops. Technical
report, Kuck and Associates, June 1987.

