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1. Introduction

In recent years, a large number of articles that deal with issues of interprocedural analysis and inter-
procedural optimizations have appeared in the literature 1+2487.9:11,12,14,15,18,17,18 Sovera] of these articles
have attempted to assess the practical value of interprocedural data-flow information or of specific
cross-procedural transformations. We recently completed a study of the effectiveness of inline substi-
tution in commercial FORTRAN optimizing compilers. During the course of the study, we came across
an example that demonstrates quite clearly the intricate and interrelated problems that arise in the
use of interprocedural techniques.

2. The Example

The famous Dongarra benchmark of numerical linear algebra operations, linpackd, was one of the
eight programs used in our inlining study. As part of the study, we selected a set of call sites in 1in-
packd for inlining and applied a source-to-source inliner to create a transformed version of the source.
Next, we compiled and ran both versions of the code on several machines. In linpackd, we inlined
forty-four percent of the call sites. This reduced the number of source language procedure calls by
over ninety-nine percent. Thus, we eliminated effectively all of the procedure call overhead from the
execution. Despite this, the running time on the MIPS M120/5 increased by eight and one-half percent
after inlining.

We did not expect this behavior. Clearly, second-order effects in the compilation and optimization of
linpackd overcame the reduction in procedure call overhead. Initially, we suspected that the problem
was increased register pressure in the critical loop of the code—after all, linpackd spends the

Original After Percent

Measurement Source Inlining Change
loads 38,758,879 | 37,523,134 -3
stores 20,422,975 19,610,724 —4
calls 141,788 2,705 98
nops 2,564,767 4,398,835 72
data interlocks 12,177,775 | 21,379,822 76
add interlocks 3,100 6,200 100
multiply interlocks 124,800 124,803 0
other fp interlocks 102 46,414 45503

Figure 1 — selected data from pixstats






subroutine daxpy(n,da,dx,incx,dy,incy)

double precision dx(1),dy(1),da
integer i,incx,incy,ix,iy,m,mpi,n

do 30i=1,n
dy(i) = dy(i) + da*dx(i)
30 continue
return
end

Figure 2 — relevant portions of daxpy

majority of its time inside a single loop. To investigate this behavior in more detail, we used the pix-
stats analyzer to look at detailed performance data. Figure 1 shows several of the important statis-
tics.

Several things stand out in the performance data. First, both loads and stores decreased slightly.
This suggests a decrease in register spills. Second, the number of call instructions executed dropped
dramatically. Almost all the calls to source code routines went away; most of the remaining call
instructions invoke run-time support routines. Third, the number of nop instructions executed nearly
doubled. Finally, there was a significant rise in floating point interlocks. The ratio of interlocks to
floating point operations rose from 0.62 to 1.1 after inlining.

Since linpackd executed almost twenty million floating point operations, the rise in interlocks was
significant. The inlined code hit an additional nine million floating point data interlocks—a seventy-
six percent increase. Interlocks on floating point adds doubled, to sixty two hundred. An additional
forty six thousand other floating point interlocks occurred during execution of the inlined code.

Seeking to understand the increase in floating point interlocks, we looked more closely at the source
code. Most of the floating point operations that occur in linpackd take place inside the routine
daxpy. Daxpy is one of the BLAS routines, the basic linear algebra subroutines. It computes y=az-+y,
for vectors z and y and scalar a. Thus, we began our search by examining the three call sites that
invoke daxpy. The call to daxpy from inside dgefa passes two regions of the array a as actual
parameters. The two actuals specify different starting locations inside a and a careful analysis shows
that the two regions cannot overlap in any invocation of daxpy. Unfortunately, the level of analysis

required to detect this separation is beyond what is typically performed in a compiler for a scalar
machine.

Figure 2 shows an abstracted version of daxpy - the details that are relevant to linpackd’s perfor-
mance. We have hidden the bulk of the code; it deals with the case where one or both of the strides,
incx and incy, are not equal to one. After inlining the call site in dgefa, the critical loop takes on
the following form.

temp = n-k

do 31 i=1, temp
a(i+k,j) = a(i+k,j) + t * a(i+k,k)
31 continue






Now, the statement that comprises the loop body both reads and writes locations in the array a.
Unless the compiler specifically inspects the subscripts with the intention of discovering this problem,
it will be forced to generate code that allows the write of a(i+k,j) to clear memory before the read
of a(itk,k) for the next iteration can proceed. Few, if any, compilers for scalar machines invest
compile time in this kind of subscript analysis.

To prove that these two array subscripts are disjoint requires some moderately sophisticated analysis.
Typically, compilers for scalar machines have not performed a deep enough analysis of array subscript
expressions to demonstrate independence in this case. In the absence of this kind of analysis, the com-
piler is forced to schedule the reads and writes in such a way that their executions cannot overlap.
This prevents the compiler from masking any memory latency behind the floating point arithmetic,
and increases the time required for each iteration.

Fortunately, the other two call sites pass unique actual parameters to each of the array positions.
Thus, in the inlined version of the code, the inner loop reads and writes a single location in b and
reads another location in a. Because the two references to b are textually identical, any moderately
sophisticated compiler will recognize that they reference a single location. Thus, the compiler gen-
erates good code for these two loops—that is, code that is not artificially constrained by memory
accesses. Unfortunately, these two call sites account for just 5174 of the calls to daxpy; the call site in
dgefa accounts for 128,700 calls.

3. Interpretation

The question remains, why doesn’t the same problem arise in the original code? Certainly, the
sequence of array references made by the two versions of linpackd are identical. How can the com-
piler generate faster code for the original version of the program? The answer lies in the idiosyncrasies
of the FORTRAN 77 standard.

Whenever a program can reference a single memory location using more than one variable name,
those names are said to be aliases. Aliases can be introduced to a program in several ways. A call site
can pass a single variable in multiple parameter positions. A call site can pass a global variable as a
parameter. In languages that provide pointer variables, they can usually be manipulated to create
multiple access paths to a single location.

The FORTRAN 77 standard allows the compiler to assume that no aliasing occurs at call sites. In the
case of the call site in dgefa, no aliasing really occurs; the authors can argue that the program con-
forms to the standard’s requirements. Common practice in the field is to assume that no aliases exist
and generate code that may give an unexpected result if aliases do exist. This allows the compiler to
support separate compilation and to avoid performing the kind of interprocedural analysis that would
be required to detect aliases if they did exist.

Some compilers, like the VMS FORTRAN compiler, ignore the standard’s restriction and compile code
that will produce the expected results in the case when variables actually are aliased. In previous
papers, we have suggested that the compiler should perform interprocedural alias analysis and use that
information to provide the friendliness of the VMS FORTRAN compiler with the additional speed that
results from understanding which parameters are not aliased.® These compilers assume that aliasing
happens infrequently, so the cost of providing consistent behavior is small. In trying to understand the
slowdown in linpackd after inlining on the MIPS, we naturally asked the question: could interpro-
cedural alias analysis have helped the situation? The answer provides some interesting, albeit anecdo-
tal, insight into the relative power of different types of analysis.






3.1. Conventional Alias Analysis

Conventional interprocedural alias analysis deals with arrays as homogeneous objects. A reference to
any element of an array is treated as a reference to the whole array. Thus, a conventional analysis of
linpackd would show that dx and dy can be aliases on entry to daxpy. Because of the flow-
insensitive nature of the information, all that the compiler can assume is that there exists a path to
daxpy that results in an invocation where dx and dy refer to the same base array. It does not assert
that the path generating the alias is necessarily executable; neither does it assert that any references to
dx and dy necessarily overlap in storage.

Given this aliasing information, a compiler following the “friendly” scheme suggested earlier would
compile code that treated the two potentially aliased variables conservatively. Thus, it would compile
a single copy of the body of daxpy, and that body would contain the code necessary to ensure that
reads and writes to dx and dy in the loop bodies had sufficient time to clear through memory. The
compiler would generate the slow code for all three call sites. This would simply slow down the 5,174
calls that ran quickly in the inlined version in our example.

38.2. Cloning

To regain the speed on the calls from dgesl, the compiler could generate two copies of daxpy’s body.
If it examined the contribution that each call site made to the alias set for daxpy, it would determine
that two of the calls involved no aliases while the third produced the alias between dx and dy. This
information suggests compiling two copies of daxpy and connecting the call sites appropriately—a
transformation known as cloning.®

With this strategy, the calls in dgesl would invoke a copy of daxpy that was compiled with the
knowledge that no aliases occur. The call in dgefa would invoke a copy that assumed an alias
between dx and dy. This strategy would produce roughly the same code that the MIPS compiler pro-
duced from the inlined version of linpackd.” Thus, interprocedural alias analysis coupled with cloning
could get us back to the point where inlining got us. It would not, however, get back the cycles that
we lost from the original code, compiled with the FORTRAN 77 standard’s restriction on aliasing.

3.3. More Complex Analysis

In the original code for linpackd, the call site boundary between dgefa and daxpy serves two pur-

poses. First, it provides the modularity intended by the designers of the BLAS routines.!° Second, by
virtue of the FORTRAN 77 standard’s prohibition on aliasing, the call site acts as an assertion that all
of the parameters at the call site occupy disjoint storage.

Introducing classical interprocedural aliasing information tells the compiler that the two parameters,
dx and dy, may actually be aliases. Can the compiler, through deeper analysis, derive equivalent infor-
mation that will allow it to conclude that no aliasing exists? To understand this issue, we will exam-
ine two possible techniques: regular section analysis and dependence analysis.

* The codes would differ in that the cloned version would have the overhead associated with the individual calls while the
inlined version would avoid it. Furthermore, the codes might well differ in the code generated for the inner loops as a result of
inlining—for example, the amount of register pressure seen in the inner loop in the inlined and cloned versions might differ sub-
stantially.






subroutine dgefa(a,lda,n,ipvt,info)
integer 1lda,n,ipvt(1),info

double precision a(lda,1)

nmi =n -1

do 60 k = 1, nmi
kpit =k + 1

do 30 § = kpt, n

call daxpy(n-k,t,a(k+1,k),1,a(k+1,§),1)
30 continue

60 continue
end

Figure 8 - abstracted code for dgefa

3.3.1. Regular Section Analysis

Classical interprocedural summary and alias analysis provides a superficial treatment of arrays. If any
element of an array is modified, the analysis reports that the array has been modified. Similarly, if
two djsjb{nt subsections of an array are passed as arguments at the same call site, alias analysis will
report that the corresponding formal parameters are potential aliases.

Regular section analysis provides more precise information about the portions of an array involved in
some interprocedural effect.*!! In the case of side-effect information, the single bit representing
modification or reference is replaced with a value taken from a finite lattice of reference patterns-the
lattice of regular sections. To make this discussion more concrete, consider the regular sections actu-
ally produced for the call from dgefa to daxpy by the PFC system.!! Figure 3 shows the context that
surrounds the call site.

PFC computes two kinds of regular section information for the call, a MOD set that describes possible
modifications to variables and a REF set that describes possible references to variables. The MoD set
contains a single descriptor, a[(k+1) :n,j]. This indicates that a call to daxpy may modify elements
k+1 through n of the j*! column of a. The REF set contains two descriptors, a[(k+1) :n,j] and
a[(k+1) :n,k]. These indicate that columns j and k can be referenced by daxpy, both in positions
from k+1 to n.

Given this information, could the compiler have determined that the two subranges of a are disjoint?
To show independence, it needs to realize that j is always strictly greater than k and that n is
smaller than the column length of a. In fact, both of these statements are true. While our example
contains enough information to allow a compiler to intersect these regular sections fairly easily, the
general case is more difficult. In general, computing the intersection of two regular sections is
equivalent to applying an array subscript independence test. Thus, we hold out little hope that a reg-
ular section-based alias analysis could have solved our problem.






3.3.2. Dependence Analysis

To avoid the disastrous problems with interlocks introduced by the appearance of an alias in the
inlined code, the compiler must show that the two sets of references in the critical loop are disjoint.
In the previous subsection, we showed that this is equivalent to showing that the regular sections
a[(k+1):n,j] and a[(k+1):n,k] don’t intersect. This problem arises regularly in compilers that res-
tructure programs for parallel or vector execution. Such compilers rely on a technique known as

dependence analysis to show the independence of pairs of array references.!®

The critical loop nest describes a triangular iteration space. To prove independence, the analyzer
must perform some symbolic analysis and a triangular form of one of the dependence tests. While this
sounds complex, a quick survey showed that KAP from Kuck and Associates, the Convex FORTRAN
compiler, the Stardent FORTRAN compiler, and the PFC system from Rice all were able to prove
independence in this case. Thus, the necessary analysis is clearly both understood and implementable.

With this kind of dependence analysis, the compiler could have generated code for the inlined version
of linpackd that was as good as the code for the original program. Unfortunately, it appears that it
will take this much work to undo the damage done by inlining the call from dgefa to daxpy.

3.4. Optimization Histories

A final option is available. Several colleagues have suggested that the compiler “remember” the origi-
nal shape of the code—that is, that it mark source statements that result from inlining. Then, the
compiler might be able to assert independence based on the implicit assertion represented by the origi-
nal call site.

Unfortunately, this tactic is unlikely to be practical. A real implementation would require tagging
pairs of references as independent to ensure that the information survived various forms of code
motion. Then, each phase in the compiler would be taught to use such information. Because such
information has no natural representation in the source code, this strategy effectively rules out a
source-level inliner. Nonetheless, in an inliner that operated on some intermediate representation, this
scheme could be used.

This scheme requires substantial work to address a relatively rare problem—one that arises from a
FORTRAN idiosyncrasy. Furthermore, it does not help in the case that the programmer actually wrote
the loop in this form, within a single procedure. It is probably simpler to implement the dependence
analysis that would be required to generate good code for the loop, whether or not it arose as a result
of inlining.

4. Conclusions

The linpackd benchmark is only a single program. Nonetheless, we felt that it shed light on several
issues that arise in compiling a program in the presence of interprocedural knowledge. In the example,
aliasing happens infrequently. Unfortunately, under some types of analysis, the program gives the
appearance of a potential alias at one critical point—the call from dgefa to daxpy that accounts for
the majority of the time spent in the entire program.

Simply adding interprocedural facts to the optimizer will not guarantee improved run-time perfor-
mance. In our work in this area, we have discovered many cases where the profitable use of interpro-
cedural information requires modifications to both the implementation and the philosophy of the
optimizer. The linpackd benchmark is an excellent example of how giving the compiler a slightly
different set of knowledge can have a major impact on the code that results.
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