Experiences in Writing a
Distributed Particle Simulation
Code in C++

David W. Forslund Charles Wingate
Peter Ford J. Stephen Junkins
Jeffrey Jackson Stephen C. Pope

CRPC-TR90060
July, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Experiences in Writing a Distributed Particle Simulation Code in C++
David W. Forslund, Charles Wingate, Peter Ford, J. Stephen Junkins, Jeffrey Jackson, Stephen C. Pope
Los Alamos National Laboratory
Los Alamos, NM 87545

dwf@lanl.gov

Abstract

Although C++ has been successfully used in a variety of computer science applications, it
has not yet become of widespread use in scientific applications. We believe that the object-
oriented properties of C++ lend themselves well to scientific computations by making
maintenance of the code easier, by making the code easier to understand, and by providing
a better paradigm for distributed memory parallel codes. We describe here our experiences
using C++ to write a particle plasma simulation code using object-oriented techniques for
use in a distributed computing environment. We initially designed and implemented the
code for serial computation and are in the process of making it work on top of the distribut-
ed programming toolkit ISIS. In this connection we describe some of the difficulties present-
ed by using C++ for doing parallel and scientific computation. In the spirit of most C++
papers, we advocate some changes in the language, although we remain devotees of C++
despite the shortcomings cited.

Introduction

Plasma particle simulation involves the modeling of the behavior of an ionized gas in its self-con-
sistent and externally imposed electromagnetic fields by advancing a large collection of particles
with discretized Newton'’s laws on a grid and the solution of discrete electromagnetic field equa-
tions using particle quantities interpolated to the grid. WAVE [Forslund 1985] is a moderately
large (20,000+ lines) plasma simulation code written in Fortran which is in wide spread use at
plasma research sites around the world. The code can consume enormous amounts of computer
time in the process of modeling problems ranging from the interaction of intense laser light with
ionized gases to the behavior of the interstellar medium. Although the model is quite simple, it re-

1990 USENIX C++ Conference 1

Experiences in Writing a Distributed Particle Simulation Code in C++

quires vast computer resources and is reasonably well suited to running on a massively parallel
MIMD computer. There are many physics problems being studied atLos Alamos National Labora-
tory which will eventually require harnessing several Cray class computers together over high
speed channels. Although the channels will be very high speed they will be high latency relative
to the clock cycle of the machines. This is similar to a network of RISC based machines running on
a ethernet. The goal of this project is to write WAVE++ in an object-oriented manner to simplify
and accelerate its use on large parallel computers and and simultaneously match the numerical
model more closely to the physical world. This also provides a good platform for evaluating the
usefulness of C++ for scientific computing and observing some ways in which the language might
be improved.

Design of WAVE++

C++ enables us to design the code in a more modular fashion than is possible to do with Fortran
and allows for much more flexibility in the type of data structures used. The most compelling rea-
son to use C++, however, is the natural decomposition of the problem for parallelization. The data
and the methods are kept together providing all the information for advancing the particles and
fields in the local grids. The grid domain in WAVE++ is currently decomposed with a quadtree in
2 dimensions and an octtree in 3 dimensions. Each leaf (a minimum size grid region) has all the
methods and data (particles and fields) needed to solve the problem locally. Communication be-
tween the regions is constrained to a single layer of cells surrounding each region. The electromag-
netic field equations involve a coupled set of second order partial differential equations. Although
in the Fortran version the field equations are solved by block diagonal linear algebra methods, in
order to minimize communication in WAVE++, we solve the field equations by means of a local it-
erative solve with only a small amount of communication across the boundary layers (Fig 1.).

FIGURE 1. Grid and Particles in the Wave++ Model.

class Neighbor __
class Region

efeedeaedead

class Particle

L 1]

} class Boundary
it

* | guard cells
>

opoovocofovsosdpo

LLLLLLL Ll
po—

g

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

Although inheritance is not heavily used in this application, it is quite useful for several of the con-
tainer classes used to manipulate the data. The basic classes involved in WAVE++ are illustrated
in Table I. The two most important are Particle, which contains the methods for advancing the par-
ticles in response to the fields, and Region, which is a restricted domain of the grid which contains
the fields and particles.

TABLE 1. Class Structure for Wave++.

Class Functionality

Array Holds grid variables, provides guard cell references

Boundary Encapsulates geometry of a region

List Linked list class

Neighbor Region guard cells and communication

Particle Physics of particles, how to accelerate, etc.

Region Basic physics (contains multiple arrays of fields and currents, knows neighbors,
pushes particles, advances fields, low level diagnostics)

Species Defines properties of groups of particles

Wave Master for all regions, initializes and collects data

A Region is intended to reside entirely on a single processor of some parallel computer. As the
particles move around on the grid, they pass from one region to another, and the fields communi-
cate across the boundaries of the various regions.The class Neighbor, which represents the overlap
between adjoining regions, is designed to provide the basic communication buffering between re-
gions. This is done in a memory efficient manner and in such a way as to minimize the number of
communication events between regions. Data is accumulated by these buffering classes and is
transmitted in one command once the data has been fully assembled. By defining reference Arrays
in Neighbor, the update of data in the internal Arrays of Region automatically updates the Array
buffers in Neighbor. The particles crossing the region boundaries are also buffered for a single
transmission to the appropriate neighboring region. This buffering facilitates the functioning of
the code in a distributed, high-bandwidth, high latency environment. We note that the design de-
cisions which were made for the sake of parallelism actually clarified the overall design and in-
creased the speed of the serial implementation. To better illustrate how the physics is related to the
communication process, we show the cyclic process of advancing the fields and particles in Fig. 2.

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

FIGURE 2. Flow Diagram of Simulation Time Step.

| advance particles |

| send to neighbors|

| accumulate grid quantities|

t+at [communicate grid quantities]

| solve fleids on grids

[_send to neighbors |

With the proven capability of C++ in handling graphics, we have designed into the code a modern
graphical user interface to assist in the setup of problems and in the interpretation of data generat-
ed. This is complicated by the desire to run the code in a distributed parallel environment. We
have chosen to use the XView toolkit because of our familiarity with Sunview.

The design of the particle and region classes allows for relatively small effort in changing the code
from 2D to 3D (a change in the tree structure and in the boundary class) and in enabling the grid to
adaptively reshape itself during the computation to track the physics of the problem. This will al-
low the code to use a variety of popular simulation methods.

Serial Wave++ Implementation

WAVE++ was first built in a serial manner on a Sun workstation, in which the leaf regions are ex-
plicitly advanced using the generating quadtree as the computational harness. This allowed for a
simple debugging environment and basic optimization issues to be addressed and solved. As with
most first ime C++ programmers, it took a few stabs into dark alleys to discover that the key to
successful programming in C++ requires an object oriented design in the first place.

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

We use gprof++ as provided by Sun Microsystem’s C++ 2.0 environment as the performance pro-
filer. In Table 2 we show a comparison of Fortran (F77) and C++ performance times for several cat-
egories of a computation with 15,000 particles running 133 time steps. In the Fortran version
“Communication” refers to the functions required to bring blocks of particles into the particle
mover. In C++ it is the time spent in the routines which send the data between regions and in the
link list functions. Note that the Particles and Fields combine to be more than 70% of the computa-
tion time in both cases but that the Fortran is about 1.7 times faster than the C++ code. Some of this
is due to the much finer granularity of the C++ classes than the Fortran. In the Fortran, one sub-
routine call pushes 256 particles. In C++ there are multiple methods invoked for each particle. The
difference is even greater in the optimized code (factor of 2.2) because of the greater opportunity
for optimization in the larger blocks of code and the small function call overhead. Use of inlining
would probably help.We are continuing to look at the class hierarchy in an effort to allow greater
optimization in C++ without the sacrifice of the object-oriented character. This issue of being able
to optimize the C++ code may continue to be a problem unless the compilers become much smart-
er. In a vector machine such as the Cray, the Fortran is substantially faster because most of the in-
ner loops are fully vectorized. Vectorization issues in C++ are discussed later in this paper.

TABLE 2. Performance Comparisons between Fortran and C++

C++-g F77 g C++-0 F77 -0
Function Time (Seconds) Time (Seconds) Time(Seconds) Time(seconds)
Particles 374 223 338 153
Fields 18 31 12 17
Communication 50 56 40 15
Diagnostics 29 5 25 4
Other 79 10 70 1
Parallelization Efforts

The granularity of the parallelism can be readily controlled by design, and in general, a number of
parallel threads run on a single processor simultaneously. This is primarily done in order to sim-
plify the problem of load balancing between processors by combining together on one node both
lightly and heavily loaded threads. At this time we have not attempted to perform dynamic load
balancing, although the structure of the code will permit dynamic reconfiguration of the grid
based on particle count, which would be a step in this direction.

One of the primary reasons for redesigning and recoding Wave using C++ was to use an object ori-
ented design (OOD) methodology. By using OOD we felt it would be significantly easier to intro-

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

duce parallelism into the code. The Presto [Bershad et al. 1988] model of computation allows the
programmer to explicitly introduce parallelism by creating separate threads of control and then
direct each thread to execute an object’s method. Using this model allowed us to develop the code
in a serial fashion and then add parallelism where we felt it was needed, without disturbing the
original code and class hierarchy.

The Presto model of programming in C++ works with a Thread class defined as:

class Thread {
private: // internal representation of thread
public:
Thread () ;
call (POBJany,PFany,...);// execute method on object
}

The basic idea is that the user can have the thread execute any method of any object:

class Region {
public:
Region ()
int update(int, float); // ...
}
Thread *t;
t = new Thread; // create a thread, on standby
Region o;
t.call(o, o.update, 2, 5.4);

This example illustrates there are many problems with the C++ implementation of the Presto
model, most of which are due to abuse of C++. The current implementation of Presto under C++
can only use methods which are not overloaded, return values are ignored and the argument list is
not coerced to the types of the formal arguments of method Obj::update. C++ does not have a way
of specifying the linkage between the object/ method/argument list which would allow proper
type checking and coercion. As it stands, Thread::call is type unsafe. Note that Thread::call is in
spirit a polymorphic function, which takes an object of any type TY, and a method of TY which has
a signature to which the argument list can be coerced. Currently C++ does not have semantics (or
for that matter syntax) which allow the programmer to express anything about method invocation
(or function calling) beyond actually doing the invocation. A bit more formally [Cardelli 1985], let
TY be a type, TY:M a method M of type TY, and ARGLIST a cartesian product over the types in the
language. The signature of Thread::call is TY*TY:M*ARGLIST where ARGLIST conforms to the
signature of TY:M. The result type of Thread::call is the result value of TY:M. In operational terms,
do the standard C++ type check, select the method, generate the correct argument list (coercion),
BUT do not invoke the method. In current C++ and the proposed Template extensions by Strous-
trup [Stroustrup 1989, the type checking is done only if method invocation syntax is used. What if

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

the underlying system is written in C as most thread systems are (SunOS, Taos, uSystem, etc.)? We
might need an interface into something like:

thread_invoke (o.update, nargs, <ptr to obj>, <arglist>);

At no point in the template is C++ invoking the method and thus a type check is not being done.
While it is common for programming languages to ignore issues like these, C++ should take the
lead in the Unix community for better software engineering practices. Perhaps it may require the
introduction of meta-notation similar to the old lint method of annotating code fragments (an un-
desirable result)

C++'s model of computation assumes a single thread of execution, compilation rather than inter-
pretation and a shared address space. Many of the problems we have encountered can be traced to
these assumptions. An issue which comes up in all distributed systems is how to actually do the
remote invocation and argument binding for functions, which has no corresponding analog in the
C++ model of computing. Having a first class abstraction for invocation and argument lists built
into the language would give the programmer a type safe interface to these objects, and facilitate
the process of delegating the invocation to remote agents and marshalling arguments “across the
wire”. The ability to get a handle on a thread invocation would allow for the implementation of
several styles of concurrent programming. Let us assume that C++ is extended with Stroustrup’s
proposal for parametric types [Stroustrup 1989], and we have some way in C++ for t.call to return
a handle to an invocation:

// assume INVOKE_ HANDLE contains a handle on the thread id
template <TY>
class future {

INVOKE_HANDLE<int> fh;

public:
operator TY() {(
// if function is done return value else
// do a thread join(IH.thread_ id)
}:
operator= (INVOKE_HANDLE<int>);
}:

class Thread {
INVOKE_HANDLE<typeof obj::*> call(obj, obj::*, ARGLIST)
} // * is universally quantified

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

future<int> futi;
futi = t.call(o, o.m, args); // o.m returns an int

// many clock ticks later ...
int a = futi; // future<int>::operator TY ()
// coercion will wait if necessary

There have been many extensions made to C++ to support distributed computation. Some have
proposed new language constructs such as Michael Tiemann’s wrappers [Tiemann 1988] which
are specifically intended to aid in building distributed programs. We argue that the proliferation of
different concurrent computational models will severely stress any language that can not be easily
extended, and that the semantics of method invocation should not be fixed in stone as in current
implementations of C++ and other sequential programming languages. Programs should be able
to get handles on the fundamental building blocks of invocations so that they can manipulate in-
vocations with semantics differing from the current semantics inherited from simple procedure
calls. Concurrent object oriented programming supporting classical rpc, futures, asynchronous
send/receive, and passive vs. active objects should be expressible in one programming language.
Static typing as in C++ should be preserved so programmers understand what they are writing
and compilers have sufficient information to do a good job of optimization.

Distributed Computing with ISIS

In order to run Wave++ in a distributed environment, we use ISIS, a distributed programming
toolkit designed and implemented at Cornell [Birman et al. 1987; Birman et al. 1989]. This choice
was made to limit the amount of code we need to write, and to take advantage of features such as
a simple communication interface which can support broadcast and replicated data, a lightweight
task system running within each process, support for replicated service which supports fault toler-
ance, the ability to perform high speed state transfer upon node failure and recovery, and a uni-
form name space. ISIS is written in C and has interfaces for C, Fortran, and Lisp. We are currently
in the process of porting Wave++ to ISIS and developing a C++ interface into the fundamental
structure of the ISIS system.

The layout of distributed WAVE++ under ISIS is to run with one master process which does the
problem setup, such as geometry layout, and perform any interaction with the user. Each region in
WAVE-++is distributed to a separate process running under ISIS. The methods of a region are
mapped to ISIS entries, which allow for concurrent execution within the ISIS process by the use of
a lightweight process system. Since passing particles between regions is a method invocation, we
can map this into ISIS entries which allow multiple neighboring regions to update the same region
concurrently. ISIS supports locks which may be needed if simultaneous method invocations need

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

to modify a single member data structure. In many real problems there will be more regions than
processors, so there will be multiple processes running on each processor. In our current imple-
mentation, the design is asymmetric with different process bodies, one for the master process and
many of the same kind for the region processes. The constructor of a region will be invoked in the
master process which will in turn fire up the ISIS process for a region somewhere on the network.
This region process is currently a kludge, since we are having difficulty in mapping the notion of a
C++ object to an ISIS entity. The next release of ISIS (2.0) should eliminate the problems in the cur-
rent ISIS interface which inhibit using ISIS directly from a C++ program. A single region will be
declared as a global in each process and each public method will be indirectly called by a C func-
tion which references the global object. It is clear that at this time we are lacking language level
support for distributing objects.

class Region {
public:

Region () ;
init (geom) ;
ml();
m2 ()
m3();

b

Region R;

initialize() ({
Geometry geom; // process message args, stuff into geom
R.init (geom) ;

}

methodl ()
{
R.ml();
}) // same for 2 & 3m

main() {
isis_entry(initialize,...);
isis_entry(methodl,...);
isis_entry(method2,...);
isis_entry(method3,...);
isis_start_main();

}

We are trying to stay within the confines of C++, and we are not language implementors (although
we are certainly language design kibitzers), so the process of generating this code is done by hand.
Fortunately, the object structure which resulted in sequential Wave++ maps well into this form. In

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

the long term, we will need to create an distributed object class where the master’s version of an
object is simply a handle to the object which resides on the worker process.

Scientific Programming with C++:

We have discussed several issues with respect to integrating concurrent programming models into
the sequential model presented by C++. In the process of developing this and other scientific
codes we have encountered some fundamental limitations which hamper the acceptance of C++
by the scientific programming community. Specific issues include optimization, storage manage-
ment, and the implementation of aggregate arithmetic types (Matrices). We expect that the resolu-
tion of these issues will require changes to the language, and that proposed extensions to C++,
such as parameterized types, could significantly further the acceptance of C++ as a scientific pro-

gramming language.
Optimization

The use of class objects to represent individual particles results in a completely scalar calculation
of the particle motion. Particles are handled very efficiently in a vectorized fashion by the Fortran
WAVE code. In order for WAVE++ to favorably compete with WAVE, some amount of vectoriza-
tion and optimization must be regained in the object oriented implementation. Currently vector-
ization over arrays of objects is difficult, as object methods tend to hide the underlying vectors
spread across a linear array of objects. Additionally, the space-wise encapsulation of data mem-
bers within an object spreads out components over strides large enough to impede some vector
engines. Similarly, machines with caches will suffer lower cache hit rates.Ideally, we would like to
stick with the C++ view of an array of objects, but have the underlying object data stored with one
contiguous vector for each data member. The current semantics of the const modifier(which,
with some help from inlining, is the only available channel for communicating data dependency
information to the compiler) are not sufficiently strong to enable even the best of compilers to suc-
cessfully perform some simple procedural integration and loop manipulation which would other-
wise enable vectorization.

Storage Management

Vectorization is but one part of the performance issue. Because of the enormous size of problems
to be solved, efficient management of the data’s memory store is also a critical factor. We discuss
below some significant problems encountered in developing aggregate arithmetic types with re-
spect to data storage and unnecessary data duplication. Problems currently solved in Fortran on
our Crays often utilize the full memory store. As these are non-virtual memory machines, it is es-
sential that C++ implementations do not waste the store gratuitously, or they will never be able to
handle sufficiently large problems to be of interest.

10

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

Aggregate Arithmetic Types in C++

The overloading of operators as object methods is one of the great attractions of C++ for the com-
munity of scientific programmers. A primary goal of a matrix/linear algebra package is to enable
programmers with strong mathematical and physics backgrounds, but cursory programming
skills, to develop algorithms by focusing on the science rather than on implementation and coding
details (the goal of all C++ class library builders). The primary constraint in this context is to de-
velop a set of tools that are as dependably efficient as they are notationally familiar. However, any-
one who has made a concerted attempt to implement a usable matrix/vector package has no
doubt faced a series of difficulties and disappointments with the current C++ language. Bjarne
Stroustrup himself has stated [Stroustrup 1988] that he couldn’t think of a worse undertaking for a
first foray into C++ programming. To our knowledge, there has been no substantial published dis-
cussion of the class of problems that arise in this context [Lea 1989], although much of it has be-
come general lore.

Consider an initial naive implementation of a Matrix class. We'll start out with only a simple row-
major, dense representation (Warning: not recommended for use in the home):

class Matrix ({
private:
int r,c;
double* data;
public:
Matrix(int m, int n)
:r(m), c(n), data(new double(m*n}) {}
Matrix (Matrixé&):;
~Matrix() { delete data; };
int rows () const { return r; };
int cols() const { return c; }:
double& operator () (int i, int j)
{ return datali*c+j]; };
double elem(int i, int j) const
{ return data[i*c+j); }:
Matrix operator + (Matrixé&) const;
Matrixé operator = (Matrixé):
}:

Matrix::Matrix(Matrixé& m)
r = m.rows(); ¢ = m.cols();
data = new double([r*c]:;
for(int i = 0; i < rows(); i++)
for(int j = 0; j < cols(); j++)
(*this) (i,3) = m(i,3);

1990 USENIX C++ Conference

11

Experiences in Wiiting a Distributed Particle Simulation Code in C++

Matrix Matrix::operator + (Matrix& m) const {
ensure_conformance (*this, m);
Matrix t (rows(), cols());
for(int i = 0; i < rows(); i++)
for(int j = 0; j < cols(); j++)
t(i,j) = elem(i,j) + m.elem(i,]):
return t;
}

Matrix& Matrix::operator = (Matrixé& m) {

if (ém == this) return *this;

delete data;

r = m.rows(); ¢ = m.cols();

data = new double[r*c];

for(int i = 0; i < rows(); i++)

for(int j = 0; j < cols(); 3j++)

(*this) (i,3) = m(i,Jj);

return *this;

}

Now consider the following code fragment:

Matrix a(M,N), b(M,N),c(M,N),d(M,N);
// assign values to a, b, and ¢ here ...
d=a+b+c;

Internally C++ converts the last statement above into the following sequence of statements (or
something similar):

Matrix templ = a.operator+(b);
Matrix temp2 = templ.operator+(c);
d.operator=(temp2) ;

Note that two temporaries have been created by the compiler, and that each invocation of
Matrix::Matrix (Matrixé&) orMatrix:operator=involves copying the entire data array
from the source to the destination Matrix. For large matrices, the space requirements for the two
temporaries may well exceed the available memory. Instrumenting and testing this example under
both the AT&T 2.0 and GNU 1.37 compilers indicates that three copies of the data array are per-
formed, two by the Mat rix (Matrix&) constructor and one by the assignment operator. As one
could hand code the expression above with no copying of data or temporary creation, these copies
and temporaries are unnecessary. As noted previously, this wasteful management of memory re-
sources can make all the difference between a usable and an unusable scientific code.

12 1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simulation Code in C++

The problem faced with temporary management is 4nalogous to temporary register management
in the compilation of expressions of primitive types such as Real and Int. An optimizing compiler
knows when it can recycle a temporary register and generates the appropriate code. For non-prim-
itive types the compiler does not perform this storage management function, thus we must mimic
this function at run time. We have identified several techniques for implementing run-time tempo-
rary control for aggregate objects (the methods we are describing are applicable to any object im-
plementing a pointer to heap-allocated store). The first technique is for each object to maintain
internal state reflecting whether this instance is bound or temporary. This state is accessed and
modified by the constructors, assignment operators, and a handful of manipulator and accessor
functions. A second technique is to implement a helper temporary class, so that an object’s type
can supply the necessary state information. This technique can be expanded to include a complete
run-time expression evaluator for each aggregate type. A third technique is to fall back on refer-
ence counting and copy-on-write semantics for the object’s store, thereby avoiding the need to
know anything of an object’s temporary status. A fourth and less desirable technique is to circum-
vent the entire issue by avoiding constructive operators and function calls completely, relying ona
procedural implementation much like that one would use in C. As there are many pitfalls to these
techniques, we have provided a more detailed synopsis of the problem of temporary control in an
appendix.

The lesson to be learned is that it is very difficult to implement aggregate arithmetic types in C++.
We hesitate to place our finger on exactly why it is so difficult, but the problem seems to involve
the inability to specify sufficient semantic information about a given object type to the compiler.

Squeezing Performance out of Inheritance Hierarchies

In an implementation of a matrix package, the class Matrix would be an abstract base class [Lea
1990], defining only the semantics of a matrix and the generic interface to a Matrix object through
the use of pure virtual member functions. All implementation details would be reserved for vari-
ous publicly derived types (such as DiagMat and SymmetricMat), frequently implementing the
virtual methods as inline code. The code fragment below will function properly for arguments of
all types derived from Matrix, but will require three virtual function invocations on each pass
through the inner loop.

void add(const Matrix& a, const Matrix& b, Matrix& result) (
ensure_conformance(a, b, r);
for(int 4L = 0; i < r.rows(); i++)
for(int j = 0; j < r.cols(); j++)
r(i,j) = a(i,j) + b(i,J);

1990 USENIX C++ Conference

13

Experiences in Writing a Distributed Particie Simulation Code in C++

These invocations are far more costly than the actual addition of elements. It is desirable to have a
version of this add () routine for all possible combinations of subtypes of class Matrix. These ver-
sions of add () are identical except for the types of the formal parameters and the use of the corre-
sponding explicit subtype method invocations. This permits the compiler to do inline expansions

of what would otherwise be virtual function calls, and to perform the usual optimizations.

At present, the best one can do is to generate all the necessary or appropriate function definitions
by hand. Intelligent editors and awk or perl scripts can be trained to do the source code generation
from a template. However, for a three-parameter function like add () above, and with ten matrix
subtypes (not an unreasonable number), there are one thousand possible combinations of parame-
ter types (an unreasonable number).

We need a mechanism for folding function definitions with inheritance hierarchies, which we be-
lieve goes beyond the capabilities of parameterized function definitions. Such a facility would al-
low the programmer to specify a prototypical function or method based upon the semantics and
interface of an abstract base class, and the compiler would assume responsibility for generating
more refined and integrated instances of the method whenever more highly refined (wrt deriva-
tion) argument lists are known at compile time. In these proceedings Douglas Lea proposes a set
of “customization” extensions to the C++ language to support such a notion of inheritance-based
parameterization.

Parameterized Types

Adaptive grids, kd trees, quadtrees, and octtrees are all parameterized types which we could use
immediately in our code. The parameterization of arithmetic and algebraic classes such as matrices
and vectors would greatly simplify future work in WAVE++. Beyond the obvious utility of matri-
ces of integral, floating point, and complex elements implemented via parameterization lies the
ability to nest parameterization, e.g. matrices of matrices. The representation of sparse-block or
block diagonal systems as matrices where each element is itself a matrix of floating point values
would simplify the implementation and parallelization of block parallel algorithms for solving the
electromagnetic field equations, especially for implicit particle simulations.

Conclusions

From our experiences with the development of WAVE++ and basic arithmetic and algebraic class-
es, we have found that C++ provides a useful and powerful paradigm for building modular and
easily extended physics codes. Data abstraction techniques can be used to closely, but not perfect-
ly, match the mathematical representations to the physical objects and also provides a nice para-
digm for writing parallel codes. The limitations of C++ that we have encountered involve
difficulties in providing the proper information to a compiler for significant optimization and vec-

14

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particle Simuiation Code in C++

torization, and the lack of a good syntax for expressing parallelism and referencing distributed
computing objects.

1990 USENIX C++ Conference

15

Experiences in Writing a Distributed Particle Simulation Code in C++

Appendix

Temporary Management with Aggregate Types

The critical issues in temporary management are unnecessary data copying and data store
utilization. By implementing aggregate types which allocate storage from the heap one
can, under many circumstances, replace element-wise copying of data with an exchange
of storage block references. Using this technique, temporaries become nothing more than
convenient short-term stewards for storage blocks of data generated and passed around
during expression evaluation. The problem becomes one of developing a sufficient se-
mantics of temporary aggregate objects that can be implemented under the constraints of
the current language.

To paraphrase the AT&T C++ Language System Reference Manual [A.T.&T. 1989], there
are only two things which may be done with a temporary object once constructed. Its val-
ue can be fetched once for use in another expression, in which case the temporary may be
destroyed immediately; or the temporary may be bound to a reference, in which case it
cannot be destroyed until the reference goes out of scope. Any time an object is created or
assigned from another like object which can be identified as a temporary, it is possible to
exchange “ownership” of the data store from the temporary to the target object, providing
that the possibility of binding a temporary to a reference is eliminated. All that is needed
is a mechanism for determining whether an object is bound or temporary. This may be ac-
complished through manipulation of an object’s internal state or through type informa-
tion. Since temporaries occur as the result of expression evaluation, it is sufficient to
ensure that all methods/functions returning aggregate objects by value set the state (ei-
ther by manipulating internal state or by typing) of the returned value to indicate tempo-
rary status.

There are several techniques whereby the determination of bound state and the transfer of
data storage can be implemented. One technique is to include some state in the object it-
self describing who owns the data storage and whether the object is temporary or bound.
This state can be manipulated by the various constructors and assignment operators, as
well as some carefully designed manipulator methods. While relatively easy to imple-
ment, the drawbacks of this method are rather severe. In order to ensure that a temporary
is never bound to a reference, it suffices to follow two cardinal rules: always pass into
functions by value (except under special circumstances), and never bind an expression or
a function return value to a reference explicitly. This implies that function arguments must
be passed by value, which is reasonable as long as the actual parameters are always tem-
poraries. This is most certainly an undesirable misfeature, and a major performance pen-
alty is imposed. (This problem may be partially circumvented by combining this
technique with the indirected approach discussed shortly.) Also, it inevitably imposes

16

1990 USENIX C++ Conference

Experiences in Writing a Distributed Particie Simulation Code in C++

upon the end user the use of certain awkward constructs in order to manipulate the state
information. For example, consider the following function which returns a Matrix by val-
ue using this technique:

Matrix IdentMatrix(int n) {
Matrix t(n,n);
for(int i = 0; i < n; i++)
t(i,i) = 1.0;
t.release_data(); // mark storage for release
return t;

}

It is necessary to mark the storage held by the local object t as available to be stolen by the
constructor of the return value. In fact, Matrix: : release_data () must mark the data
storage as twice-exchangeable: once to pass the storage from the local variable to the tem-
porary return value, and once again to pass from the temporary return value to whatever
the next or final destination may be. For this reason, it is necessary to count the passes

through various constructors and assignment operators to determine proper bound state.

Herein lies a serious problem of this technique. C++ compilers may also occasionally take
various short-cuts. Although they frequently create temporaries, the number of these tem-
poraries can vary from compiler to compiler and optimized compilations may even elimi-
nate the construction of useless temporaries, under the implicit assumption that
constructors perform no useful computation by side effect. There is no way to consistently
ensure how many constructors are invoked in passing out of a function returning an ag-
gregate by value to a constructor of a like typed destination. This uncertainty renders it
difficult ensure that a bound object always owns its data (except when explicitly released)
and that a temporary object never thinks itself bound. Although we have succeeded in us-
ing a matrix implementation similar to what we describe here in a large code, it was at the
expense of banishing theX x = £ () syntactic form from our vocabulary!

A second possible solution to the problem of temporary control is that of using a special
helping class to hold temporary object values. By carefully avoiding the binding of an in-
stance of the temporary helping class to a reference, we can freely treat the ownership and
contents of a temporary object as we wish. In the context of our Matrix example, we can
implement our matrices by creating a tmpMatrix class in parallel with class Matrix. We
ensure that all constructive functions and methods return a tmpMatrix object, and that a
tmpMatrix is never bound. By providing Matrix: :Matrix (tmpMatrix&) and Ma-
trix::operator=(tmpMatrix&) methods which always steal the data and data own-
ership from the tmpMatrix, we can ensure that all bound Matrices own their storage.

This technique does have some of the same notational convention problems as the first
proposed technique, but it is not susceptible to the problems of constructor elision en-

1990 USENIX C++ Conference

17

Experiences in Writing a Distributed Particle Simulation Code in C++

countered with the earlier technique. In fact, when combined with the indirected refer-
ence-counting scheme discussed below, many of the notational inconveniences can be
avoided. Furthermore, the code can be structured in such a way as to always guarantee
correctness under all constructor and expression syntactic variations save one - explicitly
declaring a bound tmpMatrix. Failure to follow certain cliches may introduce some runt-
ime inefficiencies, but the code will always function correctly.

A third possible solution to the problem of temporary control and excessive copying is to
implement the object class as an “intelligent pointer” to a reference counting representa-
tion class. Construction and assignment of the object class can simply pass around a han-
dle to a representation object which keeps track of all live references and implements
copy-on-write semantics. In fact, this technique may be used to advantage when com-
bined with either the previous techniques.

One significant problem, however, is that the language specification for temporary de-
struction requires only that a temporary be destroyed before control exits the most closely
encompassing scope. This means that after assigning from a temporary to a bound object,
a compiler may keep the temporary and its associated reference to the underlying repre-
sentation object alive long enough to force an otherwise unnecessary copy-on-write. Ad-
ditionally, reference counting and the associated indirection can carry a significant
performance costs. For small objects and on machines not very adept at indirection, this
cost may well be prohibitive. However, on modern day RISC architectures and with large
aggregate objects (our work often involves 100 x 100 or 10,000 x 10,000 matrices), the gains
in copy avoidance and reduced storage requirements can far outweigh the costs of refer-
ence counting and indirection.

Of course, there is a fourth technique available, which is to simply avoid the use of any
constructive functional forms. Rather than utilizing operators, one can employ the sort of
procedural technique that would ordinarily be used in C, passing in by reference the oper-
ands and a pre-constructed object to receive the results of the procedure call. Although oc-
casionally appropriate, this technique violates our sense of what C++ and object oriented
design should allow us to do with aggregate arithmetic types.

A root of the difficulties in implementing aggregate arithmetic types, as Doug Lea has
pointed out [Lea 1988; Lea 1989, is that C++ makes no assumptions about the semantics
of overloaded operators. This renders any higher-level compile-time optimization of ex-
pressions containing constructive operator invocations impossible. It also compels one to
consider the possibility of implementing expression evaluation and optimization at runt-
ime, by use of expression-constructing object operator methods. Done on a class-by-class
basis, knowledge of the full semantics of an arithmetic type can be exploited. One particu-
lar advantage in the Matrix context is the exploitation of the commutativity of matrix mul-
tiplication to reduce the operation count of multi-factor products of non-square matrices.

18

1990 USENIX C++ Conference

Experiences in Wiiting a Distributed Particle Simuiation Code in C++

References

A.T.& T. C++ Language System Reference Manual. 1989.

B. N. Bershad, E. D. Lazowska, H. M. Levy and D. B. Wagner, An Open Environment for Building
Parallel Programming Systems, SIGPLAN PPEALS Conference 1988, 1988.

K. Birman and T. Joseph, Exploiting virtual synchrony in distributed systems, Proc. 11th ACM
Symposium on Operating Systems Principle, 1987.

K. Birman, R. Cooper, T. Joseph, K. Kane and F. Schmuck, The ISIS Systems Manual, Version 1.2,
1989.

L. Cardelli and P. Wegner, On Understanding Types, Data Abstraction, and Polymorphism, ACM
Computing Surveys, vol. 17 no. 4, 1985.

D. W. Forslund, Plasma Simulation Techniques, Space Science Reviews, 1985.

D. Lea, Customization in C++, USENIX C++ Conference Proceedings, 1990.

D. Lea, Lecture on Embedded Languages in C++, July 1989.

D. Lea, Users Guide to the Gnu C++ class library, Free Software Foundation, 1988.

B. Stroustrup, Private Communication, Oct 1988.

B. Stroustrup, Parameterized Types of C++, USENIX Computing Systems, vol 2, no. 1, 1989.

M. Tiemann, “Wrappers:” Solving the RPC Problem in GNU C++, USENIX C++ Conference Pro-
ceedings, 1988.

1990 USENIX C++ Conference 19

