‘"

A Primer for Program
Composition Notation

K. Man:t Chandy
Stephen Taylor

CRPC-TR90056
June, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

.

A Primer for
Program Composition Notation

K. Mani Chandy, Stephen Taylor *
California Institute of Technology

20 June 1990

Abstract

This primer describes a notation for program composition. Program compo-
sition is putting programs together to get larger ones. PCN (Program Com-
position Notation) is a programming language that allows programmers to
compose programs so that composed programs execute efficiently on unipro-
cessors, shared-memory multiprocessors, or distributed-memory multicomput-
ers. In particular, PCN is intended to execute efficiently on multicomputers,
each node of which is a shared-memory multiprocessor.

The programs that are put together using PCN can be in PCN itself or
in C or in Fortran. Later implementations of PCN will allow composition of
programs in notations in addition to C and Fortran.

PCN is implemented on a variety of sequential and concurrent architectures
including UNIX workstations, Symult 2010, Intel iPSC, BBN Butterfly, Encore
Multimax and Sequent Symmetry.

Several programming examples are presented in the primer. The exam-
ples are presented with methods for reasoning about the correctness of PCN
programs.

*Supported by NSF, AFOSR and ONR

)

1 Overview

PCN is based on UNITY [3], a theory and a notation for concurrent pro-
gramming, and on STRAND(6], a notation derived from concurrent logic
programming[11]. Composition in PCN is motivated by, but is different from,
composition in CSP [8] The motivation for PCN and a comparison of PCN
with other notations is found in [4]. A programming environment and the
run-time support system for PCN are described in [2] and [7], respectively.

1.1 New Concepts

PCN has a three concepts that are not in languages such as C or Fortran.
Next, these concepts are discussed very briefly and informally. Readers may
want to skim through sections describing familiar material so as to spend more
time on the new concepts.

1. Mutables and Permanents: PCN has two kinds of variables: mu-
tables and permanents. Mutables are variables as in C. Permanents are
different from variables in C; values of permanents can be algebraic for-
mulae (such as y+ z), the initial value of a permanent is a special symbol
indicating that it is undefined, and a permanent is defined at most once.
For most programmers, the concept of mutable variables is familiar and
the concept of permanents is new.

2. Composition Operators: A program in PCN is a program heading
(program name and arguments), a declaration of types of mutables and
a block. A block is an elementary block or a composed block. An
elementary block is an assignment statement (similar to assignments in
C or Fortran), or a definition statement that defines permanents, or a call
to a program written in PCN, C, or Fortran. Later implementations will
allow composition of programs in other languages. A composed block
is a composition operator followed by a list of blocks or guarded-blocks
(a block preceded by a boolean expression); the composition operator
specifies how the blocks are to be put together.

The only things programmers can do in PCN are:

i

Lh)

e put blocks together using composition operators, or

o define elementary blocks.

PCN has four composition operators: sequential composition, choice
composition, parallel composition and interleaved composition. In addi-
tion, programmers can define new composition operators in terms of the
basic four.

Sequential composition of a list of blocks executes the blocks in sequence,
just as in C or Fortran. Choice composition is an extension of if-then-
else and guarded commands. In a parallel composition of a list of blocks,
all blocks in the list are executed in parallel, and the parallel composition
completes execution when all its constituent blocks complete execution.
In interleaved composition, statements of constituent blocks are executed
sequentially, but in an interleaved fashion. For most programmers, se-
quential and choice composition are familiar concepts, while parallel and
interleaved composition are new.

The central concept of PCN is that of composition — putting blocks
together — and once that is mastered all forms of composition are equally
easy.

. Tuples: PCN has a data type called a tuple which is a (pointer to
a) sequence of items between braces ‘{’ and ‘}’. Tuples play the role of
pointers in PCN. Linear lists, circular lists, trees and other such linked
structures are constructed using tuples.

Tuples are a minor modification to pointers and structs in C; therefore, pro-
grammers will understand the concept readily. The concepts of mutables, per-
manents and composition are different from concepts found in conventional
notations, and therefore, readers should focus attention on these ideas.

1.2 Highlighting Examples, Syntax and Operation

Most of this primer consists of examples; a large number are found in the Sim-
ple Programming Ezamples section. There are times when readers will want
to study examples carefully and there are other times when readers will want

3

v

to skip examples. To help identify examples, an example is placed between
lines as in:

——_#_—_————————

Examples of tuples

The empty tuple: {}.

M

Most examples are on odd-numbered pages, and are therefore on right-hand
side pages with most text on left-hand side pages.
For ease in indentification, syntax is placed between lines as in:

tuple w {<term >} | ...

The operation of statements in PCN are described in terms of operations

in familiar languages such as C. Operational descriptions of PCN statements
are placed between lines as in:

repeat skip until rhs is reducible;
assign the reduced value of rhs to m.

)

)

2 Syntax

The syntax is given in BNF. All nonterminal symbols are in italics, and all
terminal symbols are in plain type. The notation < su -, where su is a
syntactic unit, represents a list of zero or more instances of the syntactic unit,
with multiple instances separated by commas. The notation < su =0 is a
list of one or more instances of su separated by commas. The notation (su)
denotes an optional syntactic unit su.

Symbols in this document translate to symbols found on standard key-
l:gloa.rds as in C:
= translates to ?=, < to <=, # to !=,— to ->, and > to >=.

Variable names, macros, file inclusion and comments are as in C.

A variable name is a sequence of characters where the first character is a
letter, and a character is a letter or a digit. A letter is an upper case or lower
case letter of the alphabet, or it is the symbol “”. An upper case letter is
different from a lower case letter.

Macros and file inclusion are discussed in the section called Compilation
and Modules.

A comment begins with /* and ends with */ as in C.

3 Data Types

3.1 Conventional Data Types
Conventional data types, such as in C, are also data types in PCN:
1. char for character,
2. int for integer,
3. float for single-precision floating point number, and
4. double for double-precision floating point number.

Qualifiers for int in C (such as short, long, and unsigned) are not available in
PCN.

PCN has arrays of these data types. Arrays in PCN and C are treated in
the same way.

Strings in PCN are treated in exactly the same way as in C. A string S
is an array A of char, where the characters of S are A[f], in increasing order
of i starting with i = 0 and ending with ¢ = k, where k is the smallest index
such that A[k + 1] is the null character \0. If A[0] is the null character, S is
the empty string. A constant string can be denoted by placing the characters
of the string between quotes; for example "PCN" is a string consisting of the
three characters: P, C and N. The empty string is ** ".

In this document, a number is an integer or a single-precision floating
point value or a double-precision floating point value. We define a simple-
value as a number or a character or an array of numbers or a string.

PCN does not have structures (or ‘structs’) as C does. However, PCN has
tuples [6], which are discussed next.

3.2 Tuples and Lists

A tuple is a pointer to a possibly empty sequence of terms, where a term is
a simple-value, an expression, or a tuple. Expressions in PCN have the same
syntax as arithmetic expressions in C, except that the only operators in PCN

W

Examples of tuples
The empty tuple: {}.

A 1-tuple: {{z}}, where the single element of the tuple
is itself a 1-tuple, {z}.

A 2-tuple: {"msg",3}.

———————_‘—_——__—_—_——_——
__—__—___—M———————-—

Examples of lists
The empty list: {}

A single-element list: {d,{}} is a list containing a
single element, d.

A four-element list: {a,{b,{c,{d,{}}}}} is a list
containing the sequence of 4 elements, a, b, c and d, in
that order.

e
#

are +, —, * and /. A tuple is represented in a program as a sequence of terms
between braces — ‘{’ and ‘}’ — where terms are separated by commas.

In most of this manual we treat a tuple as the sequence of terms that it
points to, rather than as a pointer. For instance, we shall refer to the tuple
{1,2} rather than the pointer to {1,2}.

A list is a special case of tuple. A list is:

1. The empty tuple, {}, or
2. A 2-tuple, {a,b}, where the second element of the tuple, b, is a list.

PCN has a more succinct notation for lists: a list consisting of a sequence of
zero or more elements can be represented by the sequence of elements between
the enclosing brackets‘[’ and ‘]’. Also, for brevity, we can employ the notation,
[L1,La, - .., Lk | 2], to represent the tuple, {L1, {L2, {.--{L«,z}.-.}}}.

For convenience in dealing with program-calls, the notation k(zo, ...,),
where h is an identifier and zo,...,Z; are tuple-elements, denotes the tuple
{"h",zo,...,Zk}.

Syntax of Tuples A tuple has the following syntax:

tuple : {< term >} |
[< term] |
[< term =) ‘| term] |
identifier(< term >)

term i expression | tuple

Examples of list notation
The empty list: The empty list is []; hence [] = { }.

A single-element list: [d] is a list containing a sin-
gle element, d; hence [d] = {d,{}}.

A four-element list: [e,b,c,d] is a list containing the
sequence of 4 elements, a, b, ¢ and d, in that order; hence

[a’ b, c’d] = {av {b7 {c’ {d’ {}}}}}

Catenation of lists: A list, y, consisting of a se-
quence of values, u, v, w, followed by another list, z,
is represented by: [u,v,w | 2]; thus, if z = [b,¢,d], and
y = [u,v,w | 2], then y = [u,v,w, b, ¢, d].

More examples of tuples
g(z) and {"g",z} denote the same tuple.

f(z,y) and {"f",z,y} denote the same tuple.

9

The sizeof Function PCN includes a function sizeof which has a single
argument and returns:

e the length of its argument in characters, where its argument is treated
as a string, if its argument is a string or an array of char,

e the number of elements in the argument if its argument is a tuple or an
array of numbers, and

e 1 (one) if its argument is a single number or character.

The argument of sizeof must be a variable. Note the difference between the
sizeof functions in C and in PCN: in C the function returns the size of its argu-
ment in bytes, whereas in PCN the function returns the number of elements.

Elements of a tuple are referenced in the same way as elements of an array
in C: t[1] is element i of a tuple t, for 0 < ¢ < sizeof ().

10

Examples of sizeof function

Arrays of numbers:

/* declare u to be an array of 10 integers */
int u[10];

sizeof (u) is 10.

A single number:

/* declare i to be an integer */
int 1;

sizeof (2) is 1.

A tuple: Let z be the tuple {z,y}; then sizeof(z) is
2.

A string:

/* declare D to be an array of 10 chars */

char D[10];

let D[0] = "P", and let D[1] = \0 (i.e., D[1] is the null
character of C) then sizeof (D) is 1.

11

4 Variables

4.1 Values of Variables

At each point in a computation, a variable has precisely one value. The value
of a variable is a term. (Recall that a term is an expression or a tuple.) The
value of a variable in PCN can be an expression such as y+ 2. In C, execution
of the assignment z = y + 2z causes the value of z to become the value of y
plus the value of z, and thus the values of variables z, y and z in C are always
numbers; the execution of the assignment in C does not make the value of
r become the formula y + z. Indeed, in most notations, values of variables
are numbers or characters, but not expressions. Variables in PCN can have
expressions as values which allows for a degree of symbolic computation in
addition to the usual numeric computation of C and Fortran.

Notation for Value of a Variable In C, z = 2 denotes that z has value
2. We need additional notation to denote the value of a variable in PCN
as illustrated by the following example. In PCN, u = z + y + z does not
necessarily imply that the value of u is the expression z + y + z, because it is
possible that the value of u is the expression v + 2, and the value of v is the
expression z + y. To avoid this ambiguity, we denote the value of a variable =
by value(z). Instead of writing, z = 2, to denote that z has value 2, we shall
say that value(z) is 2. Thus, value is a function that maps from variables to
terms.

At any point in a computation, we can substitute the value of z for z.
Therefore, if u has value v + z and v has value z + y at some point in a
computation, then u = v+ z and v = z+y and hence, u = (z + y) + z at that
point. If u and v are undefined, we are not permitted to conclude anything
about the relationship between u and v; in particular we cannot conclude that
u=v.

Classes of Variables A variable in PCN is either a mutable or a perma-
nent. Informally, a mutable is similar to variables in C and a permanent is a
variable that is assigned at most once, as in logic programming.

12

Examples of Values of Variables
Possible values of a variable z are presented next.
Simple-Value: value(x) is 2.
Expression as Value: value(z)is y + 2.
Expression as Value: value(z) is u + v * (y + 2).
Tuple as Value: value(z) is {y}.

Tuple as Value: value(z) is {2,"A",y,2}.

13

4.2 Mutables

The type of a mutable is declared in programs in which it is used, its initial
value is an arbitrary value of its declared type, and its value can be changed
arbitrarily often during a computation by execution of assignment statements
that assign values to it. Type declarations are as in C. A mutable typeis a C
type (i.e., char, int, float or double) or it is a tuple.

The elements of a mutable tuple are variables. The declaration of a tuple
is identical to other declarations in C, and the word tuple is used as the type
name. Arrays of mutable tuples are permissible. The value of a variable,
declared to be of type tuple, is a tuple (and is not an address of a tuple).

4.3 Permanents

A permanent is different from variables used in C. A permanent is either
undefined or defined. A permanent is defined at most once in a computation.
A permanent is defined to be a term. A permanent is defined by executing a
definition statement in which the permanent appears on the left-hand side;
definition statements are described later.

The value of an undefined permanent is undefined. The value of a defined
permanent is its definition. The value of a permanent does not reference
mutables.

Permanents are not declared.

4.4 Review of Differences between Permanents and
Mutables

Declaration Mutables are declared. Permanents are not declared.

Initial Value The initial value of a mutable is an arbitrary value of its

declared type. The initial value of a permanent is a special symbol indicating
that it is undefined.

Expressions as Values The value of a mutable cannot be an expression.
The value of a permanent can be an expression.

14

-

Tuples as Values The elements of a mutable tuple can be mutables or
permanents. The value of a permanent can be a tuple; however, no element
of a permanent tuple can be a mutable.

Changes in Values The value of a mutable can be changed arbitrarily many
times. The value of a permanent can be changed at most once, from undefined
to a defined value. Once a permanent is defined, its value remains unchanged
forever thereafter.

15

5 Programs

A program consisists of a heading followed by a declaration section followed
by a block. The heading is the program name and a list of formal param-
eters, as in C. In PCN all parameters are passed by reference, unlike in in
C where parameters can be passed by value. The syntax of a declararation
section is identical to that in C. The scope of a variable is the program in
which it appears: all variables that appear in a program are either formal
parameters or local variables of the program. All mutables referenced in a
program are declared in the declaration section of the program; permanents
are not declared.

Local variables in PCN are local to the program in which they are de-
clared, whereas local variables in C can be declared to be local to blocks
within programs. Also, C allows programs to access variables that are not
formal parameters or local variables of the program, whereas PCN does not.

The dimensions of a local array of a program can change from one call
of the program to the next, unlike in C where some of the dimensions of a
multidimensional local array must remain unchanged in all calls.

The syntax of a block is:

block = elementary-block | composed-block

elementary-block :: definition-statement |
assignment-statement |
program-call

Composed blocks are discussed later; the next few sections discuss each of
the forms of elementary blocks.

16

An Example of Formal Parameters and Local
Variables

p(sum, z)
int sum, v;
{7z < [m|zs] —

{; v:=m, sum = sum + v, p(sum,zs)}
}

The operators in this example are not important here;
only the heading and the declarations are relevant. The
first line is the heading for a program with name, p, and
two formal parameters, sum and z. The second line de-
clares sum and v to be integer. Therefore, sum and v
are mutable. Since the types of x, zs and m are not de-
clared, they are permanent. Since zs, m and v are not
formal parameters, they are local variables of program p.

17

6 Definition statements

A definition statement has the following syntax:

definition-statement :: permanent = term

The right-hand side of a definition cannot be a mutable tuple. The ex-
ecution of the definition statement r = rhs completes, and at completion,
value(z) is rhs' where rhs' is obtained by substituting value(v) for each mu-
table v in rhs. Mutables do not appear in rhs’, and hence the value of a
permanent does not name mutables.

The value of an expression in PCN can be an array. For example if mutable
m is declared to be an array of integers, then the value of the expression ‘m’
is an array. Hence, upon completion of the execution of the statement z = m,
the value of z is an array.

Arithmetic operators in PCN are identical to those in C, and hence their
operands are numbers, not arrays of numbers. So the expression ‘m+1’, where
m 1s an array, is incorrect.

18

Examples of Definition Statements Without
Mutables

In these examples, z is a permanent.

number: Execution of the definition statement
z2=23.0

terminates with
value(z) = 3.0.

string: Execution of the definition statement,
z = "abc"

terminates with
value(z) = "abc".

19

Examples of Definition Statements With
Mutables

In these examples, z and y are permanents, and m is a
mutable with value 2 at the point in the computation at
which the definition statements are executed.

expression: Execution of the definition statement
z=y+m+3

terminates with
value(z) =y + 2+ 5.

tuple: Execution of the definition statement

z = {ya {m}’ 5}
terminates with

value(z) = {y, {2},5}-

tuple: Execution of the definition statement
z = [m,ubu]
terminates with

value(z) = [2,"b"].

20

Examples of Definition Statements With Arrays

If A is a 2-element integer array with A[0] = 1, and
A[l] = 2, then the definition statement, z = A termi-
nates with z defined as a 2-element integer array with
value(z[0]) = 1, and value(z[1]) = 2.

21

7 Reducibility

The meaning of an assignment is based on the concept of reducibility. For a
term e, the reduced value of e is a simple-value or tuple z, where z = e. A
term e is reducible at a point t in a computation if and only if a reduced value
of e can be computed at ¢, i.e.,

1. e is a simple-value or a tuple, in which case the reduced value of ¢ is e,
or

2. value(e) is f and f is reducible, in which case the reduced value of e is
the reduced value of f, or

3. e is an expression and all variables in e are reducible, in which case the
reduced value of e is computed by substituting the reduced value of v
for each variable v in e and evaluating.

7.1 Properties of Reducibility

Value Equals Reduced Value For all variables z, the value of z is equal
to its reduced value. This is because the reduced value of z is obtained from
the value of z by substitution and expression evaluation.

Unique Reduced Values The reduced value of an element e at a point in
a computation is unique. For example, if the reduced value of e is 2 at a point
in a computation then the reduced value of e cannot also be 3 at that point.

Mutables Are Reducible A mutable is reducible at all points in compu-
tation and the reduced value of a mutable is its value.

Undefined Permanents Are Not Reducible An undefined permanent is
not reducible because the value of an undefined permanent is a special symbol
indicating that it is undefined, and hence none of the rules of reducibility can
be employed to compute a simple value or tuple for it.

22

Examples of Reducibility

Example 1

Let z be a permanent, and let m be a mutable that is
declared to be an integer. If at a point ¢ in a computation,
value(2) is 1 and value(m) is 2, then z + m is reducible
and its reduced value is 3, at ¢.

If m = 4 at a later point ¢/, then the reduced value of
z+mis5att.

Example 2

If at a point ¢ in a computation, y is undefined, then y is
not reducible at ¢. If at ¢, the value of z is y + 1, then z
is not reducible at ¢ because y is not reducible at ¢.

Example 3

If at a point ¢ in a computation, value(z) is y + 1, and
value(y) is 0, then z is reducible and its reduced value
is 1 at ¢. Furthermore, if z is a permanent, the reduced
value of z remains 1 at all points after .

23

Defined Permanents A defined permanent may or may not be reducible.
For example, if value(z) = y + 2, where z, y and z are permanents, then z is
not reducible if y or z is not reducible. If, however, y and z are reducible with
reduced values (say) 1 and 2 respectively, then z is reducible and has reduced
value 3.

Once Reducible, Remains Reducible Once a term is reducible it re-
mains reducible forever thereafter. The reasons for this are as follows. Mu-
tables, simple-values and tuples are always reducible. Once a permanent is
reducible it remains reducible because its value remains unchanged. Once an
expression (that can name mutables and permanents or both) is reducible it
remains reducible.

Reduced Values of Permanents The reduced value of a permanent re-
mains unchanged. For example, if the reduced value of z is 2 at some point
in a computation, then the reduced value of z remains 2 forever thereafter.
Likewise, the reduced value of an expression, that does not name mutables,
remains unchanged. For example, if the reduced value of y + 2z is 3 at some
point in a computation (where y and z are permanents), then the reduced
value of y + z remains 3 thereafter.

Reduced Values of Mutables The reduced value of a mutable can change;
for instance mutable m can have value 2 at some point in a computation and
value 3 at a later point. Likewise, the reduced value of an expression that
names mutables can change. For example, the value of expression y + z + m
can change, where m is a mutable, because m can change value.

24

More Examples of Reducibility

Example 4

If at a point ¢ in a computation, value(y) = {1, 2}, then
y is reducible and its reduced value is {1,z} at t. Note
that y is reducible even if z is not reducible.

Example 5

If at a point ¢ in a computation, value(y) = A, where A
is an integer array, then y is reducible, and its reduced
value is A at t.

Example 6

If at a point ¢ in a computation, value(y) = z + 1, and
value(z) = 2 *y — 2, then both z and y are nonreducible
at t. (Note that from the mathematics of simultaneous
equations we can conclude z = 0 and y = 1, but accord-
ing to our definitions z and y are not reducible.)

25

8 Assignment Statements

An assignment-statement is an assignment of either a simple-value or a tuple.

assignment-statement :: simple-assignment |
tuple-assignment

8.1 Assignment of Simple-Values

The syntax of an assignment statement that assigns a simple-value is:

simple-assignment :: mutable := expression

The execution of the assignment statement m := rhs where rhs is an ex-
pression and m is a mutable variable, declared to be one of the types in C, is
as follows:

repeat skip until rhs is reducible;
assign the reduced value of rhs to m.

A skip is an operation that does nothing, and it is sometimes referred to
as a ‘no-op.” Therefore, while rhs is not reducible, the program executes op-
erations that do nothing — in other words, the program waits. When rhs
becomes reducible, the reduced value of rhs (coerced to be the same type as
m) is assigned to m, and the assignment completes. If rhs never becomes

26

Simple Examples of Assignment

Right-Hand Side Does Not Reference Permanents

int m, %, 3, u[10], v[10];
oy M =147, i, U=, ...

The assignment m := i + j is executed in the same way
as the assignment m = ¢ + j in C: the sum of the values
of the integers ¢ and j is assigned to m.

The assignment u : = v makes u become the array v.

Right-Hand Side References Permanents

int m;
ey M 1= 2, ...

The assignment, m := 2, where m is an integer mutable,
and z is a permanent, is executed as follows. While z is
not reducible, skip. When z becomes reducible, assign its
value (coerced to integer) to m. If z never becomes re-
ducible, execution of the assignment does not complete.

27

reducible the assignment does not complete, and execution of the assignment
statement is an infinite number of skips. Note that if rhs does not reference
permanents, the assignment statement is executed without skips, because rhs
is reducible; in this case the assignment is executed in the same way as assign-
ments in C.

8.2 Assignment to Mutable Tuples

The syntax of an assignment-statement that assigns a tuple is as follows:

tuple-assignment ;2 mutable := tuple |
mutable := mutable

The right-hand side of an assignment to a mutable tuple is a tuple all of
whose elements are variables, or it is a mutable that is declared to be a tuple.
An assignment to a mutable tuple always completes. (Unlike assignments to
variables declared to be one of the C types, the execution of an assignment
to a tuple does not skip until the right-hand side becomes reducible; this is
because the right-hand side is a tuple and hence is reducible.)

Upon completion of the assignment m := rhs, where rhs is a tuple,
value(m) is rhs. The assignment u := v, where u and v are mutables de-
clared to be of type tuple, copies the value of v into u, as does the execution
of any assignment u := v. Since v is a pointer to a tuple, the assignment
u := v makes u and v point to the same tuple. Therefore, the assignment
makes value(u) become value(v).

28

Examples of Assignments to Tuples

Right-Hand Side is a Tuple
/* declare m to be a mutable of type tuple */

tuple m;
. m = {u,v} ..

This assignment m := {u,v} completes, and at comple-
tion, value(m) is {u,v}.

29

9 Program Calls

The syntax of a program call is:

program-call :: program-name(< term >) |
'‘permanent(< term >) |
mutable

A program call program-name(< term) is the same as a function call
in C, except that all parameter passing is by reference, and the program does
not return a value (in the way that a function does). Later, we will describe
two modifications to this syntax that allow programmers to specify processors
on which called programs are to be spawned, and modules (files) that contain
the source texts of the called programs. The essential meaning of program
calls does not depend on these modifications; so, we discuss these modifica-
tions later in sections called Architectures, Implementation and Efficiency and
Compilation and Modules, respectively.

Later in this section, we consider program calls of the forms ‘permanent(<
term >) and mutable.

9.1 Calling C programs from PCN

PCN programs can call C programs. The actual parameters in a call to a
C program can be permanents or mutables. All parameter passing in PCN
is by reference; hence, the arguments of the C program must be pointers to
simple-values (i.e., char, int, float or double) or mutable tuples.

A mutable tuple z is assigned {Cvar[0],...,Cvar[n —1]} by executing the
built-in subroutine build_data(Ctype,n,Cvar,z), where Ctype is char, int,
float or double, n is an integer, and Cvar is a C variable of type array of
Ctype with at least n elements. Similarly, Cvar becomes z[i] by executing
read_data(Ctype,n,Cvar, z).

30

Examples of Calls to Programs

Consider the C program:

q(v,w, z)
int *v, *w, *;
{ *v = *v — *z; *w = *w + *z }

The execution of the call ¢(a,b,2), where a and b are
mutable integer variables and z is a permanent, is as
follows: repeat skip until z is reducible; when z becomes
reducible, execute ¢(v, w, 2’) where 2’ is the reduced value
of z. Note that even though z is a permanent, and its
value cannot be changed by the C program, z is passed
by reference and not by value. That is why the type dec-
laration of formal parameter, z, is ‘int *z’, and not ‘int
z’. Permanent z must reduce to an integer value because
the corresponding formal parameter z is a pointer to an
integer.

Consider the PCN program:

p(w,z,y,2)
Ml y=w+z, z2=w—=z}

A call p(a,b,c,d) of program p causes program p to be
executed, even if actual parameters are not reducible. We
will see later that the program completes, and at com-
pletion value(c) is a + b and value(d) is a — b, regardless
of whether a or b are reducible.

31

The execution of a C program call is as follows:

repeat skip until all actual parameters are reducible;
execute the C program.

We do not specify the behavior of PCN programs that call C programs
which continue execution for ever; therefore, programmers must ensure that
C programs terminate.

9.2 Calling Fortran Programs from PCN

Fortran programs are called in the same way as C programs. Parameter passing
in Fortran is by reference, as it is in PCN.

9.3 Calling PCN Programs from PCN

PCN programs can call PCN programs; the actual parameters of the call can
be mutables or permanents. The called program is initiated even if some or
all of the actual parameters are not reducible.

There is a difference between the execution of calls to C programs and PCN
programs. A called C program is initiated only when all its actual parameters
are reducible. A called PCN program is initiated without waiting for all its
actual parameters to be reducible. (A strict semantic is used for C calls and
a nonstrict semantic for PCN calls.)

Types of actual parameters should be the same as types of corresponding
formal parameters in calls to PCN programs. In particular, an actual param-

eter should be a permanent if and only if the corresponding formal parameter
is a permanent.

9.4 Program Names as Actual Parameters of Programs

A program-name can be passed as an argument of a program. To distinguish
a variable whose value is a program name from a program name, the symbol

32

Example of a Program Name as A Parameter

Next, consider a program map, which has a formal pa-
rameter operator defined as a string that is a name of a
program.

map(operator, lst, result)
int result;

{? Ist = [head | tail] —
{; 'operator(head, result),
map(operator,tail, result)

}

Passing a Program Name as a Parameter

Calling the preceding program with map("add", L, R),
causes the following block to be executed:

{? L [head |tail] —
{; add(head, R), map("add",tail, R)}
}

33

’ is employed. For example y(z) is a call of program y, whereas ‘y(z) is a call

to a program g, where the reduced value of y is "g".

Recall that f(zo,...,zx) represents the tuple {"f", zo,...,zx}. Similarly,
'f(zo,--.,zk) represents the tuple {f,zo,...,zk}.

The program call ‘y(z) where z is a list of actual parameters and y is a
permanent, is executed as follows:

repeat skip until y is reducible;
execute g(z) where "g" is the reduced value of y.

9.5 Program Calls as Mutables

A program call f(argo,...,arg,) is represented internally within the PCN
compiler as the mutable tuple {" f", argo,...,arg,}. Let the value of a muta-
ble tuple t be {"f*", argo,...,arg,} at a point where t is executed; then exe-
cution of ¢ is equivalent to the execution of the program call f(argo,...,arg,).

34

Example of a Program Call in a Mutable Tuple

Program for, presented next, is similar to a for-loop. It

executes program, prog, for index ranging from low to
high.

for(indez, low, high, prog)

int indez, low, high;

tuple prog;

{; indez := low, loop(indez, high,prog)}

}

loop(indez, high, prog)
int index, high;
tuple prog;
{? index < high —
{; prog, indez := indezx + 1, loop(indez, high,prog)}
}

The call, for(z,0,2, sum(z,t,result)), causes the follow-
ing sequence of program calls to be executed:
sum(z,0, result), sum(z, 1, result), sum(z, 2, result).

The call for(j,0,1,product(j,z,y,val)) causes the fol-
lowing sequence of program calls to be executed:
product(0, z,y, val), product(l, =, y,val).

35

10 Composed Blocks

A composed block has the following syntax.

composed-block :: {; < block =) } |
{ll < block =M } |
{[] < block =M } |
{? < guard — block >~ }

where ¢;’ denotes sequential composition, ‘||’ denotes parallel composition, ‘[J’
denotes interleaved composition and ‘?’ denotes choice composition.

11 Sequential Composition

Let d be the block {; b,,...,b}, where £k > 0. The execution of d is a

sequential execution of b;, in order, from z =1 to : = k.

12 Parallel Composition

Let d be the block {|| b;,...,b:}, where k > 0, and for all where 0 < z < k,
b; is a block. In an execution of d, all blocks b; are executed in parallel. Block
d terminates when the computations of b; terminate for all i. (A computation
of d is a fair interleaving of computations of §;, for all 7, 0 < z < k. Execution
is fair in the following sense: For all i, it is always the case that eventually
computation of b; will progress if b; has not terminated.)

Programmers must ensure that the following condition about shared vari-
ables is satisfied.

Restriction on Shared Variables in Parallel Composition Shared mu-
tables must not change value during parallel composition.

36

Example of Sequential Composition

p(J, k,z,y)

int 3, k, m;

/* Let the value of j be J. */

/* m is a local integer mutable of p */

{;
m:= 2,
[* value(m) is 2 */

z=m+1,
/* The reduced value of z is 3. */

k:=y+j
/* value(k) is sum of the */
/* reduced values of y and j. */

}

First m becomes 2, then z is defined as 2+1 (and hence its
reduced value is 3), and then, after executing skips until
y becomes reducible, z becomes the sum of the values of
y and j.

37

This restriction is equivalent to: In a parallel composition block d defined

as {|| b,..-,b},

for each variable v accessed in distinct blocks b; and b;:
1. v remains unchanged during the execution of d, or
2. v is a permanent.

For this purpose, each element of a shared array is treated as separate variable;
therefore, blocks composed in parallel can modify a shared array, but each
element of the array must remain unchanged or be accessed by at most one
block. Similarly, each element of a tuple is treated as a separate element.

An important consequence of this restriction is that blocks, composed in
parallel, interact with each other in a disciplined manner. Consider a predicate
z that references only variables that appear in one of the constituent blocks,
say b; of parallel composition block d. For example, z could be u = v + 1,
where u and v are variables referenced in block ;. Suppose we can reason
from the text of block b; (i.e., by considering block &; in isolation, independent
of the blocks that b; is composed with) that predicate z holds at some point p
in b;. In our reasoning we are not permitted to conclude that permanents are
undefined if they are undefined in b; (because permanents can be defined in
blocks that are composed with b4;). Then, no matter what blocks are composed
in parallel with b;, we are assured that our reasoning is valid, and z holds at
-

An equally important consequence of this restriction is that we do not have
to be concerned about atomicity in parallel composition.

Choice composition is discussed next, and interleaved composition is dis-
cussed later.

38

Example of Parallel Composition

{ll p(G,k,z,y), y=z+ 3}

(Program p is defined in the previous example.) This
parallel composition block obeys our convention about
shared variables. The only shared mutable is § which is
not modified in the block.

Let the value of 5 be 1 when this block is executed. The
computation of this block terminates, and at termination,
the reduced value of z i1s 3, and y is 4, and k is 5.

A possible computation of the parallel composition block
is: y is defined as z+1 (assuming j = 1), then, in program
p: m becomes 2, then = becomes defined as 2 + 1, and
finally £ becomes 5. Note that y can become defined
before £ becomes defined.

39

13 Choice Composition

A choice composition block is similar to a guarded command [5]. A guard in a
choice composition block is a boolean expression or the keyword default. At
a point in a computation, a boolean expression is:

1. not reducible, or
2. reducible and has value true, or
3. reducible and has value false.

We shall see later that once a guard is reducible it remains reducible for ever
thereafter.

There can be at most one default guard in a choice composition block.
A choice block without a default guard is equivalent to a choice block with
the addition of the guarded block: default — skip. Therefore,we can restrict
attention to choice blocks that contain precisely one default guard.

The basic idea about execution of the choice block:

{? default — by, G1 — b1, ..., Gk — b }

is as follows:

1. If all guards are false then execute by; execution of the choice block
terminates when execution of by terminates.

2. If at least one guard is true then execute any block b; where G; is true;
execution of the choice block terminates when execution of b; terminates.

3. Because guards can be nonreducible, there is a third possibility: at least
one guard is nonreducible and no guard is true. In this case the program
repeatedly executes skips until one of the first two conditions holds.

Execution Details Details of executions are only relevant in interleaved
composition, which is used rarely. Hence, the reader can skip to the next
subsection (which is called Guards).

40

Examples of Choice Blocks

Example 1
Consider the choice-block:

{? 220 - y=z+1,
z<0 - y=z-1
}

The execution of this block is as follows. While z is irre-
ducible, skip. When z becomes reducible, if z > 0, then
only the first guard holds, and hence y is defined as £+ 1;
if z < 0, then only the second guard holds, and hence y
is defined as = — 1; if z = 0, then both guards hold, and
a nondeterministic choice is made to define y either as
z+ 1, or as £ — 1. Execution of the block terminates
after y is defined.

Example 2
Consider the choice-block:

{? 220 > y=z+1

}

The execution of this block is as follows. While z is
irreducible, skip. When z becomes reducible: if z >
0 then y is defined as = + 1 else y is left unchanged;
execution of the block terminates.

41

A more detailed execution of the choice block described in a C-like notation
is as follows. Let S be a set of indices. Initially S is the set of indices 7 for all
¢ where 1 <2 < k. Let done be a boolean variable that holds when execution
of the choice block completes; initially done = false. While S is nonempty and
done does not hold, select a member ¢ of set S, where the selection is made
nondeterministically and fairly; if G; is reducible with value true then execute
b; and then set done to true; if G; is reducible with value false then delete 3
from S. If the while loop completes, then upon completion of the loop, either
S is empty or done holds. On completion of the while loop, if S is empty then
execute by and then set done to true.

Fairness in selection of members of S is a requirement that if members
are selected from S infinitely often then each member that remains in S is
selected infinitely often. Equivalently, if some guard G; becomes reducible,
then eventually ¢ is removed from set S (if, when G; is evaluated, its reduced
value is false) or some block b; is executed.

S:={il <i<k}
done := false;
while(S # {} && !done){
nondeterministically and fairly select any 7 in S}
if(G; is reducible){
if(G;){b;; done = true}
else S=5—1
}
}
/* end execution of while loop */
/* S is empty or done */
if(S = {}){bo; done = true}

13.1 Guards

The syntax of a guard is:

42

%

Another Example of a Choice Block

Example 3
Consider the choice-block:

{? 220 - y=z+1,
220 - y=2z+1
}

Repeat skips until both guards are reducible and both
have reduced value false, or at least one of the guards
is reducible and has reduced value true. In the former
case the choice block terminates without changing the
value of any variable. In the latter case, if both guards
have reduced value true then execute either y = z + 1
or y = z+1, if only z > 0 has reduced value true then
execute y = z + 1, and if only z > 0 has reduced value
true then execute y = z + 1.

43

guard :: < guard-element =) |
default

A guard is either a sequence of one or more guard elements or default.

Case 1: If All Guard-Elements are Reducible If all the guard-elements
of a guard G are reducible, then G is reducible, and the value of G is a
‘conditional-and’ of its guard-elements: Each of the guard-elements in the
sequence is evaluated in order until all guard-elements in the sequence are
evaluated or a guard-element evaluates to false; if all guard-elements evaluate
to true the value of the guard is true, otherwise the value of the guard is false.
The evaluation of a guard is similar to the evaluation, in C, of an expression
consisting of the sequence of guard-elements with the logical connective &&
between guard-elements.

Case 2: At Least One of the Guard-Elements is Irreducible Next,
consider the case where at least one of G’s guard-elements is irreducible: If
all guard-elements before the first nonreducible element of G evaluate to true,
then G is not reducible; otherwise, G = false.

13.2 Guard-Elements

The syntax of a guard-element is:

guard-element :: type-check | comparison |
data-check | pattern-match

44

A Simple Example of Type Check
{? int(z),z2>25 - y=z+1}

Consider the case where z is reducible. The guard is
evaluated as follows: First evaluate int(z); if = is an in-
teger then evaluate £ > 5. Therefore, if z is a character,
the guard evaluates to false and evaluation of the guard
stops. If z is integer and z > 5, then the guard evaluates
to true, and if z is integer and z < 5, then the guard
evaluates to false.

45

Type Checks The syntax for type-check is:

type-check :: type-name(permanent)
type-name :: int | float | double | char | tuple

If z is not reducible, type-check h(z) is not reducible. If z is reducible,
type-check h(z) evaluates to:

1. true if the reduced value of z is of type h or is an array of type A,
2. false otherwise.

For example, if z is reducible, then int(z) holds if and only if the reduced value
of z is an integer or an array of integers.

Comparison The syntax of a comparison is:

comparison :: term equality-test term |
erpression ordering expression

equality-test :: == | #

ordering = <|<|>]|2>

A comparison = « y, where a is an ordering, is reducible if and only if
both z and y are reducible; the reduced values of z and y must be numbers or
characters (but not arrays). Characters and numbers are compared as in C.

A comparison z « y, where a is an equality-test, is reducible only if both
z and y are reducible. An equality-test £ == y, where the reduced values of

46

Another Example of Type Check and Comparison
{? int(z),z2>2y — z=z+1}

Consider the case where y is irreducible and z is re-
ducible. If the reduced value of z is an integer, then the
guard, is not reducible because the first guard-element
evaluates to true and the second guard-element is not re-
ducible. If the reduced value of z is a character, then the
guard evaluates to false, because the first guard-element
evaluates to false.

Next consider the same program except that the order of
guard-elements is reversed.

{? z>y,int(z) - z2=z+1}

As before, consider the case where y is irreducible and
z is reducible. As in the last example, if the reduced
value of z is an integer, then the guard, is not re-
ducible because the first guard-element is not reducible.
If the reduced value of z is a character then the guard
is not reducible for the same reason. Note that in the
previous example, if = is a character the guard s re-
ducible. This example shows that the ordering of guard-
elements can make a difference to the computation.

47

z and y are tuples, is equivalent to the following sequence of equality-tests:
sizeof (z) == sizeof (y), and for all ¢ where 0 < i < sizeof (z): z[z] == y[2].
Thus, equality tests of tuples are equivalent to sequences of equality-tests
without tuples. A comparison z = y is reducible if z and y reduce to simple

values. Equality of characters and numbers is as in C.
Inequality is defined as the negation of equality.

Data Check The syntax of a data-check is:

data-check :: data(permanent)

If z is reducible then data(z) = true. If z is not reducible, then data(z) is
also not reducible. The value of data(z) is never false.

48

Testing Equality of Tuples

{1 a==y - p(=))

In the equality test, z or y can be tuples (and therefore
can be lists). If z = [0,1,2], then the equality test suc-
ceeds only if y is equal to the same list. If y is [0,1]z2],
where z is a nonreducible permanent, then £ == y is not
reducible.

As another example, consider the case where the reduced
value of z is z and the reduced value of y is also z. The
equality test is reducible if and only if z is reducible. Of
course, if z is reducible, the equality test succeeds.

49

13.3 Pattern Matches

A pattern-match is merely a syntactic convenience for operating on tuples. It
has the following syntax:

pattern-match :: variable < pattern

pattern : {< pattern-element >}
pattern-element :: simple-value | permanent | pattern

A pattern-match z < pat succeeds (i.e., has reduced value true) if the
reduced value of z is a pattern of the same ‘form’ as the pattern, pat, on the
right. For example, if pat is {u,v}, then the match succeeds if the reduced
value of z is a tuple of size 2. If a match succeeds, a variable in the pattern
become an alias for the corresponding element of the tuple for the remainder
of the guard and its associated block. Thus the pattern-match z < {u,v}
succeeds if z is the 2-tuple {z[0],z[1]}, and if the match succeeds then u
becomes an alias for z[0], and v becomes an alias for z[1] for the remainder

of the guard and its associated block. Next, matches are discussed in more
detail.

Evaluation of a Pattern-Match A permanent that appears in a pattern
must be undefined when the pattern-match is evaluated. Mutables cannot
appear in patterns.

A pattern match, z L pat can be transformed into a sequence of guard-
elements without the pattern match by the following syntactic transformation:
Replace the pattern match by,

tuple(2), (sizeof () = sizeof (pat))
and for each i, where 0 < 7 < sizeof (z), if pat[é] is a

pattern add the pattern-match, z[z] < patlz],

50

Simple Patterns

In the following example, z, hd and t! are permanents
that are undefined at the point at which the pattern
matches are executed.

2z = {hd,tl} —{|hd=u, v=tl}
is equivalent to:

tuple(z), sizeof(2) =2 — {|l 2[0] = u, v = 2[1]}

The match z = {hd, 1} succeeds if z is a tuple of the
same form as {hd, tl}, i.e., if z is a 2-tuple. If the match
succeeds, then hd is an alias for z[0], and ¢/ is an alias

for z[1] in the remainder of the guard and its associated
block.

51

simple-value add the equality-test, z[¢] == pat[z],

permanent replace all instances of pat[i] by z[i] in the remainder of the
guard and its associated block.

52

Patterns with Strings and Numbers
?
z = {v,{y},2,"msg"} —{lv=y}

is equivalent to

tuple(z), (sizeof(z) = 4),
(tuple(2[1]), (sizeof(2[1]) = 1)),
(2[2] = 2),(2[3] ="msg") —
{Il =[0] = 2{1][0]}

The match succeeds if the reduced value of z is the same
form as the pattern, i.e., if 2’s reduced value is a 4-
tuple where 2[3] and z[4] are the integer 2 and the string
"msg", respectively, and where the form of z[1] is the
pattern {y}. If the match succeeds, v and z[0] are aliases
of each other, and likewise, y and 2[1][0] are aliases of
each other.

Patterns with Lists
z = [w]|z] — {;sum = sum + w, p(sum,z)}
is equivalent to

tuple(z), sizeof(z) = 2,—
{; sum := sum + 2[0], p(sum, 2[1])}

53

14 Interleaved Composition

Interleaved composition is rarely used, but it is discussed here for completeness.
This section can be skipped by most programmers. Interleaved composition is
used only in a few programs, such as the fair merge, that most programmers
copy from program libraries.

Interleaved composition is the same as parallel composition except that:

1. shared mutables can be changed during execution of an interleaved com-
position block (whereas shared mutables cannot be changed during exe-
cution of a parallel composition block), and

2. all blocks that are composed with interleaved composition are executed
on the same processor (whereas blocks composed with parallel composi-
tion can be executed on several processors). Therefore, at most one of
the blocks composed by interleaved composition can execute at any time,
whereas more than one of the blocks composed by parallel composition
can execute at the same time.

The computation of an interleaved composition block is an interleaving
of the computations of its constituent blocks. This means that a step in the
execution of an interleaved composition block is a step of one of its constituent
blocks, and execution of the composed block terminates when all its constituent
blocks terminate execution.

A sequence s of steps of computation of a block b is said to be atomic
if in reasoning about b we can assume that no block, other than b, executes
between the initiation of the first step of s and completion of the last step of
s. If sequence s is atomic then every subsequence of s is atomic as well.

Consider execution of {; m := n, | := m}. To reason about this block
we need to know whether some other block can change the value of m after
execution of the first statement, m := n, and before execution of the second
statement, | := m. If sequential composition of the two statements is an
atomic action then, in reasoning about the block, we can assume that no
other block executes after the initiation of the first statement and completion
of the second. The larger the granularity of atomic actions, the easier it is to
reason about a block because there are fewer points at which other blocks can
interfere.

54

Fair-Merge Example

Program fair-merge has two input arguments, = and y,
and an output argument z, where all arguments are per-
manents. At any point in the computation, an argument
is a list or a list concatenated with an undefined perma-
nent. Let:

z=[z,..., ' zs]

y=[y".., ¥ lys]
z=[2},...,25|zs]

where zs, ys and zs are undefined or the empty list, and
t, 7 and k are nonnegative integers. Assume that the
elements of £ and y are distinct; for example, an element
could be tagged with the list (z or y) that it is in. The
specification of fair-merge is:

1. z!,...,2F is an interleaving of some prefix of

z!,...,z' and some prefix of y,...,y*. (A prefix
is an initial subsequence.)

2. Eventually, z = [2%,..., 2%, ..., 2"|u], where n > k,

and u is an undefined permanent or the empty list,
and 2},..., 2" contains z,...,z" and ¢',...,y".

We develop fair-merge using interleaved composition.

55

“©

Atomicity A sequence of steps in a computation is atomic, if no step in the
sequence is:

1. a program call, or

2. execution of a parallel composition block, or

3. repetition of skips until a term becomes reducible.
Therefore,

1. The execution of a definition statement is an atomic action.

2. The execution of an assignment statement z := rhs, where rhs does not
reference permanents, is an atomic action.

3. The execution of an assignment statement z := rhs, where z is a mu-
table declared to be one of the C types, and rhs is an expression that
names permanents, is:

repeat skip until rhs is reducible;
assign the reduced value of rhs to z.

The assignment of the reduced value of rhs to z is an atomic action.

4. The execution of an assignment statement z := rhs, where rhs is a tuple,
or a mutable of type tuple, is an atomic action.

5. A call to a C program is executed as follows:

repeat skip until all arguments of C are reducible;
execute the C program passing it pointers to mutable arguments and to
reduced values of its permanent arguments.

The execution of the C program, after all its arguments are reducible, is
atomic.

56

A Program that uses Atomicity

Program copy has two arguments; the first is a permanent
list, v, that is not modified by the program, and the
second is a mutable tuple, m. Mutable tuple m has a
single element which is a permanent; let the value of m
be {y} when copy(v,m) is called. Program copy copies
list v into y.

copy(v,m)

tuple m;

{7 vE[ulvs], m={y} -

} i y=[u]lys], m:={ys}, copy(vs,m)}

The operation of the program is as follows. If v is the
empty list, the program terminates. If v is not the empty
list, y becomes the head element, u, of v followed by an
undefined permanent ys, and then m becomes the tuple
{ys}, and then copy(vs,m) is executed where vs is the
tail of list v. Thus m remains a single-element tuple {ys}
containing the undefined tail of y.

We shall develop fair-merge by interleaved composition of
copy(z,m) and copy(y, m). Blocks in interleaved compo-
sition can modify shared mutables; hence it is permissible
for both copy programs to modify m.

57

6. The execution of sequential composition of atomic actions is an atomic
action.

7. The evaluation of a guard (see the paragraph on execution of choice
blocks) is an atomic action.

8. In the execution of a guarded block G — B, the evaluation of G (and
if the reduced value of G is true) followed by an atomic action in B, is
atomic.

Atomicity is not relevant in any form of composition other than interleav-
ing composition. In particular, atomicity is irrelevant in parallel composition
because shared mutables cannot change value during parallel composition.

58

Fair-Merge Example

fair_merge(z,y, 2)

tuple m;

{i m:={z},
{ll copy(z,m), copy(y,m)},
2 mifw) - w=[]}

}

In program copy, evaluation of a guard followed by se-
quential execution of the following definition statement
and assignment statement form a single atomic action
that copies the next value of the input list to the out-
put. At every point in the computation, we are guar-
anteed that computation of each of the copy programs
will progress if the program has not terminated. There-
fore, all values in the input list eventually get into the
output list. A copy program terminates if and when its
entire input list has been copied (or, equivalently, the
list remaining to be copied is empty). The interleaved
composition block terminates if and when both copy pro-
grams terminate; at that point, the undefined tail, w, of
z is defined to be the empty list.

59

15 Syntactic Sugar: Composition of Guarded
Statements

The syntax that we gave for composed blocks was:

composed-block :: {; =< block =) } |
{Il < block =1 } |
{[] < bdlock =M }|
{? < guard — block =M }

Thus parallel and sequential composition compose blocks but not guard —
blocks. For notational convenience we relax this syntax to allow parallel and
sequential composition of guard — blocks. Each guard — block is transformed
into the choice block {? guard — block}. The sugared syntax is:

composed-block :: {; < unit =) } |
{I < unit =@ }|
{I <unit=® }|
{? < guard — block = }

unit :: block | guard — block

We may find it convenient to think of all composition blocks as consisting

of a composition operator operating on a list of guard — block, where some
guards can be true.

60

Examples of Syntactic Sugar

The following programs, the first with the added sugar,
and the second without it, are equivalent:

f(t,2)

{7t L {left,val,right} — {|| F(left,1), f(right,r),
I>2r—2z=1+41,
r>l—2=1+4r

}

}

9(t,2)

(7t £ {left,val,right} — {|| g(left,l),g(right,r),
{? IZT—-)z:l-I-l},
{?r>2lo2z=1+r}

}

61

The Variable Name ¢’ There are a few places where we would like to refer
to a variable that we do not wish to use later. For instance, we may want a
pattern with 3 elements, but we wish to use only the first of the 3 elements.
Instead of coming up with names for the remaining two elements we can use
‘.’ as a name for both elements. Each instance of ¢’ is treated as the name of
a new variable.

16 -Built-In Programs and I/O

make_tuple and build_data One of the built-in programs provided in PCN
is make_tuple which has two arguments, z and n where z is a permanent that
is defined by make_tuple and n is a variable unchanged by the program. The
program defines z to be a tuple of n elements, where n is a nonnegative integer,
where each element of z is a permanent. (If n < 0 then z is defined to be the
empty tuple.) The elements of tuple z are left undefined by make_tuple. For
example, make_tuple(z,2) defines = to be a 2-tuple, leaving permanents z[0]
and z[1] undefined.
The program call make_tuple(z,n) is executed as follows:

repeat skip until n is reducible;

coerce n to integer (if necessary);

if(n > 0) define z to be a tuple with n elements
else define z to be a tuple with 0 elements.

Program build_data is described in subsection Calling C' Programs from
PCN in section Program Calls.

I/O The standard libraries of C are used for I/O and for interacting with
the operating system.

62

An Example Using Variable Name ‘_’

p(z, 2)
int n;
{0 =2 [{msg",m,} | vs] -
Rt f(m,n), z=[n| zs], p(zs, 2s)},
z = [{"val", _,m} | zs] —
{; g(m,n), z=[n]zs], p(zs,2s)}

g

This program has an input argument x and an output ar-
gument z. The input is a list of 3-element tuples, where
the first element of each tuple is the string "msg" or the
string "val". If the first element is the string "msg" then
the second element of the tuple is used by the program to
compute n by executing f(m,n), and then n is placed in
list z. If the second element is the string "val* then the
third element of the tuple is used by the program to com-
pute n by executing g(m, n), and then n is placed in list 2.

63

17 Architectures, Implementation and Effi-
ciency

The speed of execution of a PCN program depends on its implementation. To
understand how to develop programs that execute quickly, programmers need
to understand something about the implementation of PCN. The implemen-
tation may change in future releases, but the central ideas about efficiency are
not likely to change significantly.

Uniprocessors, Multiprocessors, and Multicomputers PCN programs
run on uniprocessors, multiprocessors or multicomputers. A multiprocessor
is a collection of two or more (uni)processors where all processors access a
common address space. A multicomputer is a collection of computers where
different computers in the collection have disjoint address spaces[10]. A node
of a multicomputer (i.e., one of the computers in the collection that forms the
multicomputer) can be a uniprocessor, a multiprocessor or a multicomputer.
One of the processors in a multiprocessor or a multicomputer is designated the
host processor; this is the processor with which programmers interact. (The
host processor in a uniprocessor is the uniprocessor itself.) A computer with
n processors (in addition to the host) has its processors indexed 0 through n,
where the host is indexed 0.

Mutables, Permanents and Address Spaces A mutable resides in pre-
cisely one address space. The implementation does not make copies of muta-
bles. By contrast, a permanent can have several copies that reside in arbitrarily
many address spaces. Since a permanent is either undefined, or defined and
unchanging, all copies of a permanent are consistent in the following sense: if
two copies of a permanent differ in value then in one of the copies the per-
manent is undefined. A program does not make use of undefined permanents;
it merely waits for the permanent to become defined. Therefore, no problems
are created if the value of a permanent is defined in one copy and undefined
in another.

Consider a block b in a program p. If b references mutables (declared in p)
then b is executed in the address space in which p is initiated. This is because

64

there is only one copy of a mutable, and all blocks that access a mutable are
executed in the address space in which the mutable resides. If b does not
reference mutables then b can be executed in any address space; copies of
permanents are made in the address space in which b is executed, as needed
by b. The greatest degree of concurrent execution is achieved by employing
parallel composition in which the blocks composed in parallel do not share
mutables; this allows blocks to be spawned on arbitrary address spaces and
thus employs concurrency in multicomputers and multiprocessors.

Interleaved Composition All blocks composed by interleaved composition
that reference mutables are executed on the same processor (and hence on the
same address space) to guarantee that at most one of the blocks composed by
interleaved composition is executing at any time.

Granularity If the execution time of a block is small, the time required to
spawn the block in a remote address space may exceed the time gained from
concurrent execution of the block. Therefore, programmers should ensure
that block granularity in parallel composition is appropriate for the target
architecure.

65

18 Simple Programming Examples

18.1 Membership in a List

Develop a program member with arguments z, m and r, where z is a list, m
and r are mutables, and at termination of execution of the program, r = true
if and only if m appears in list z. Mutable m is to be left unchanged by
member. Of course, permanent = must be left unchanged by member.

member(z,m,r)

int m, r;
{7 =z <0 — 1 := false,
z = [olzs], v==m — r:=true,
z = [vlzs], v£m — member(zs,m,r)

}

Assume that false = 0 and true = 1, to be consistent with C.

Operation of the Program
1. If z is the empty list, then r becomes false and the program terminates.

2. If z is nonempty, let the head of = be v, and let the tail of z be zs; if
v = m then r becomes true and the program terminates.

3. If z is nonempty and the head of z is not m, then the value of r is set
by member(zs,m,r), and member(z,m,r) terminates execution when
member(zs, m,r) does.

Reasoning About the Program In many examples we reason about the
correctness (and the efficiency) of programs by induction. In this example, we
carry out induction on the length of z. (The length of a list is the number of
elements in it.)

Base Case: If z is the empty list then r is false upon termination because
m does not appear in an empty list.

66

Induction Step: Assume that member(z,m,r) is correct (i.e., it ter-
minates with the correct values of its arguments) for all lists = that have at
most k elements, for some k > 0, and prove that it is correct for lists with
k+1 elements. If £ has k+1 elements it has a head element. Let the head of =
be v and let the tail of z be zs; then zs has k elements. If v = m then r must
be true at termination of the program because m is in list z. If v # m, then
at termination r is true if and only if m is in zs; by the induction assumption,
member(zs,m,r) sets r to true if and only if m is in zs.

A Program with Permanents Now consider a program with the same
specification, except that m and r are permanents, where m is left unchanged
by the program, and r is defined by the program. All we need to do is to
remove the declaration of m and r, and replace assignment statements by
definition statements.

memberl(z,m,r)
{2 z] — r = false,
z = [v|zs], v==m — r=true,
z = [v|zs], v#Em — memberl(zs,m,r)

18.2 Sum all Elements in a List

Develop a program sum with arguments z and r, where z is a list of integers
and r is a mutable integer. At termination of execution of the program, r is
required to be the initial value of r plus the sum of the elements of z. List =
is to be left unchanged. For example, if z = [1,2,3] and r = 4 initially, then
r = 10 at termination of the program.

sum(z,r)
int r;

{? =z < vlzs] — {; r:=r +v, sum(zs,r)}

}

67

Operation of the Program In this program:
1. If z is the empty list the program terminates leaving r unchanged.

2. If z is nonempty, let v be the head of z and let zs be the tail of z;
mutable r becomes r + v, and then sum(zs,r) is executed.

Reasoning About the Program Let r be the initial value of r, and let rf
be the value of r when program sum terminates execution. We reason about
the program by inducting on the length of z.

Base Case: If z is the empty list, the program terminates and r is left
unmodified, and hence rf = r', as required.

Induction Step: Assume that program sum(z,r) is correct for all lists
z with length at most k, for some k > 0, and prove that it is correct for lists =
with length k + 1. If the length of z is k£ + 1 then z is nonempty; let v be the
head of z and let zs be the tail of z. List zs has length k. From the induction
assumption, sum(zs,r) is correct. Hence rf = r' + v+ sum of elements in zs,
and hence rf is the sum of v and the sum of all elements of z, as required by
the specification.

Another Summation Example Next we write a program total to define a
permanent 2z as the sum of all the elements of a list z. The difference between
this program and the previous one is that z is permanent whereas r is mutable,
and furthermore z is to be the sum of the elements of z, whereas the sum of
the elements of z was added to r in the previous program.

total(z, z)
int r;
{; r:=0, sum(z,r), z=r}

An alternate version totall, using only permanents and parallel composi-
tion, is given next.

68

totall(z, z)
{7 z]] — z=0,

z = [v|zs] — {|| z = zs + v, totall(zs, 2s)}
}

Operation of the Program The operation of this program is as follows.
1. If z is the empty list then permanent z is defined to be 0.

2. If z is nonempty, let v be the head of z and let zs be the tail of z.
Define permanent z to be the expression zs + v, where zs is defined by
totall(zs, zs).

Reasoning About the Program We are obliged to ensure that blocks in
parallel composition do not modify shared mutables. This program has no
mutables, and so the restriction about shared variables holds vaccuously.

We reason by induction on the length of z, as in the previous example. The
reasoning is not given here because it is largely a repetition of the arguments
given earlier.

Difference Between Programs Let z be the list [1,2]. At the termination
of total(z, z), permanent z is defined to be the number 3. At the termination
of totall(z, z), permanent z is defined by the following equations:

z =1+ a, where a is defined by

a =2+ b, where b is defined by

b=0.

If we now execute m := z, where m is a mutable, and then print m, we will
get the same answer whether we use total or totall because the reduced value
of z is the same in both cases.

At first glance, sequential programs such as total may appear more efficient
in memory and time than parallel programs such as totall. Consider the
following variation in which a parallel implementation can require less time
than a sequential implementation.

69

18.3 Sum Function of Elements in a List

Let z be a list. Define 2z as follows: z is the sum over all elements of the list
of a function g applied to each element. For example, if z is [1,2] and g is the
square operation, then z = 5.

A sequential program sigma, analagous to sum in the previous subsection,
is given next.

sigma(z,r)
int r, w;
{2 z £plzs] — {; fv,w), r:=r+w, sigma(zs,r)}

Program f(v,w) sets the value of w to be g(v).

Program Operation The operation of this program is as follows. If z is
empty the program terminates with r unchanged. If z is not empty, let v be
the head of z, and let =s be the tail of z; first compute w, then increment r
and then call sigma(zs,r) to sum the remainder of the list.

Program tote, given next, is analogous to total of the previous subsection.

tote(z, 2)
int r;
{; r:=0, sigma(z,r), z=r}

A version using parallel composition is given next.

totpar(z, z)
int w;
2 =] — z=0,
z < [oles] — {I| {; fv,w), y=w},

z=2zs+y,
totpar(zs, zs)

70

This program spawns programs f(v,w), for each element v of list z, in
parallel. Thus if f takes a long time to execute, and z is a large list, and there
are a large number of processors, the parallel version will execute faster than
the sequential version, because execution of f for different elements of the list
will proceed in parallel.

In program totpar we are obliged to ensure that no mutable shared variable
in a parallel composition block is modified. There are no mutable shared vari-
ables in the parallel composition block, and hence the restriction is satisfied.

Consider an erroneous program in which the parallel composition block of
totpar is replaced:

error_totpar(z, z)
int w;
2 z]] —z=0,
zZ [olzs] — {Il f(v,w),
=25+ w,
error_totpar(zs, zs)

}
}

In this program, w is a mutable shared by blocks f(v,w) and z = 2s + w
in a parallel composition block, and w is modified by f(v,w); this violates
the restriction on shared mutables in parallel composition. The reason for the
restriction is that program error_totpar(z, z) does not specify what value of w
is to be used in the definition z = zs+ w: is it the value of w before, during or
after the execution of f(v,w)? This problem does not arise in totpar because
the shared permanent y is used in place of shared mutable w, and y is defined
as the correct value of w — the value of w after f(v,w) is executed — by
means of the sequential composition block {; f(v,w), y = w}.

18.4 Reverse a List

Develop a program rev with arguments z, e and b, where = and e are lists that
are to be left unchanged by rev, and b is to be defined by rev to be the list
of elements in z, in reverse order, concatenated with e. For example, if z =

71

[uAn,uBu]’ and e = [nCu,uDu], then b is to be deﬁned as [uBu’uAu,uCn,an].
(The name b stands for the beginning of the reversed list, and e stands for the
end of the reversed list.)

rev(z, e, b)
{? =

T

(] —b=e,

[v]zs] = {|| es=[v]e], rev(zs,es,b)}

- 11

}

Operation of the Program
1. If z is the empty list, then b = e.

2. If = is nonempty, let v be the head of z and let zs be the tail of z. Define
b by rev(zs, es,b), where es is defined as v followed by e. For example,
if z = [*A","B"], and e = ["C","D"], then v is "A", and zs is ["B"].
Hence, es is ["A", "C", "D"].

Reasoning About the Program We first ensure that mutable shared vari-
ables are not modified in parallel composition, and then reason about the pro-
gram by induction on the length of z. This reasoning is very similar to that
given for the previous programs, and is left to the reader.

18.5 Height Of A Binary Tree

Develop a program ht with arguments ¢ and z, where ¢ is a binary tree, and 2
is to be defined to be the height of the tree. A tree t is either the empty tuple,
{ }, or a 3-tuple {left,val,right}, where left and right are the left and right

subtrees of {. Both ¢ and z are permanents, and ¢ is to be left unchanged by
the program.

ht(t, z)
{2t {} —2=0,
t = {left,val,right} — {|| ht(left,l), ht(right,r),

(2 1>r—2=1+1,

72

TZI—-)Z:].-{-T

}

Operation of the Program

1. If ¢ is the empty tuple, in which case t is the empty tree, its height z is
defined to be 0.

2. If t is not the empty tree, then ¢ is a 3-tuple. Let ¢ be the tuple
{left,val,right}. Define permanents ! and r by ht(left,l) and ht(right,r),
respectively. If | exceeds r then define z as the expression 1 + 1. If r
exceeds ! then define z as the expression 1 + r. If r = [, then define 2
eitheras 1+ {orl+r.

Reasoning About the Program We check that mutable shared variables
are not modified in parallel composition. We reason about the program by
induction on the height of tree t.

Base Case: If tis the empty tree, then its height z is defined (correctly)
as 0.

Induction Step: Assume that the program is correct for all trees ¢ with
height at most k for some k > 0, and prove that the program is correct for all
trees with height £+ 1. If ¢ is a tree with height k + 1, then ¢ is a tuple of the
form {left,val,right} where the heights of trees left and right are at most
k. By the induction assumption, ht(left,!) and ht(right,r) correctly define [
and r to be the heights of the left and right subtrees of ¢. Hence z is 1 more
than the height of the higher subtree.

18.6 Preorder Traversal of a Binary Tree

Develop a program preorder with arguments ¢, b and e, where t is a binary
tree, b and e are lists. Binary trees are represented using tuples as in the last

73

example. Parameters ¢ and e are to be left unchanged by the program. List
b is to be the list consisting of the val of all nodes of the tree in preorder,
concatenated with list e. (A traversal of a tree in preorder visits the root,
then the left subtree, and finally the right subtree.)

preorder(t, b, €)

{2 t<{} — b=e,
t = {left,val,right} — {|| b=[val|l],
preorder(left,l,m),
preorder(right,m,e)

}
}

Operation of the Program
1. If t is the empty tree then b is defined as e.

2. If t is not empty, then it is a tuple of the form {left,val,right}. In
parallel, define m by preorder(right,m,e), and I by preorder(left,l,m),
and b as val followed by [.

Reasoning About the Program First check that shared mutables are not
modified in parallel composition.

We prove correctness of the program by induction on the height of tree ¢.

Base Case: If t is the empty tree, then b = e, because there are no
nodes to traverse.

Induction Step: Assume that preorder(t,b,e) is correct for trees of
height at most k, k¥ > 0, and show that it is also correct for trees of height k+1.
Let t be a tree of height k+1. Then t = {left,val,right}, where le ft and right
are trees of height at most k. Define a permanent m by preorder(right,m,e).
By the induction assumption, m is the preorder traversal of the right subtree
concatenated with e. Define a permanent ! by preorder(left,l,m). By the in-
duction assumption, [is the preorder traversal of the left subtree concatenated

74

with m. Define b as [val | l]; hence, b is val followed by the preorder traversal
of the left subtree of ¢ followed by the preorder traversal of the right subtree
of ¢, and hence b is the preorder traversal of t.

18.7 Quicksort with Copying

In this section we present C.A.R.Hoare’s quicksort [9] program, ¢0, that uses
lists (of permanents); later, we discuss an in place quicksort, g1, that uses
arrays. (The quicksort algorithm is discussed in most texts on algorithms
such as [1].)

In this section, when we refer to a list of numbers we mean a list of per-
manents that (eventually) reduce to numbers. Program ¢0 has two input
variables, ¢ and end, and one output variable, z: variables z and end are
permanents that are not defined by the program, and z is a permanent that is
defined by the program. All three variables are lists of numbers. The output
z is specified to be the list = sorted in increasing order concatenated with list
end. For example if end = [5,4] and = = [2,1], then z = [1,2,5,4]. If end is
the empty list, then z is z sorted in increasing order.

q0(z, end, 2)
2 zZ] — z = end,

z = [mid|zs] — {|| part(mid,zs,left,right),
q0(left,[mid | r], 2),
q0(right,end,r)

}
}

Operation of the Program The operation of program ¢0 is as follows. If
z is the empty list then z is defined to be end. If z is nonempty, let m:id be
the first element of z, and let s be the remaining elements of z. The call
part(mid,zs,left,right) defines left to be the list of values of zs that are
at most mid, and right to be the list of values of zs that exceed mid. Call
q0(right,end,r), thus defining r to be the sorted list of right appended to end.
Call q0(left,[mid | r], 2), thus defining z to be the sorted list of left followed
by m:d followed by r.

5

Reasoning About the Program There are no shared mutables in the
parallel composition, and hence the restrictions on parallel composition are
satisfied. We reason about this program by induction on the length of . The
reasoning is straightforward and is left to the reader.

Next, we discuss program part. Program part inspects each element of s
in turn, placing elements that are at most m:d in left and all other elements
in right.

part(mid,zs,left,right)
{7 as =[] = {ll left =[], right =[]},

?

zs = [hd |], hd <mid — {|| left =[hd|!ls],
part(maid, tl,ls, right)
2
zs = [hd |tl], hd>mid — {|| right =[hd|rs],

part(mid, tl,left,rs)
}
}

Operation of the Program If zs is the empty list, define left and right

to be empty lists. If zs is not empty, then let Ad and tl be the head and tail (re-
spectively) of zs. If hd is at most mid, define ls and right by part(mid, tl, s, right),
and define left as hd followed by ls. If hd exceeds mid, define left and rs by
part(mad,tl,left,rs), and define right as hd followed by rs.

Reasoning About the Program We check that shared mutables are not
modified in parallel composition, and reason about the program by induction
on the length of zs.

Base Case: If s is the empty list, then left and right are correctly
defined as empty lists.

Induction Step: Assume that the program is correct for all mid, zs,
where the length of zs is at most k, for some £ > 0, and prove that the

program is correct for all zs of length k + 1. If the length of zs is k£ + 1, then

76

zs is nonempty; let hd and tl be the head and tail (respectively) of zs. The
length of tl is k. Next, consider the case where hd is at most mid. From the
induction assumption, part(mid,tl,ls,right) defines Is and right to be the
elements of ¢l that are at most mid, and that exceed mid, respectively. Since,
zs is hd followed by tl, and hd < mad, it follows that the sequence of elements
of zs that are at most mid is hd followed by the sequence of elements of ¢! that
are at most mid, and the sequence of elements of zs that exceed mzd is the
sequence of elements of ¢/ that exceed mid. Hence, in this case, the definitions

of left and right are correct. A similar argument applies for the case where
hd > mad.

18.8 In Place Quicksort

Program ql Program ¢l has two input parameters, I, and r, both of which
are permanents, and it has one input-output parameter C which is a one-
dimensional array of numbers. Let C*™* be the initial value of C, and let
Cfinel he the value of C on termination of the program. Then Cf*¥ is to be a
permuation of C*¢, where Cf"[l,... r] is C™™[l,...,r] in increasing order,
and the other elements of C are to remain unchanged. (If I > r then Cf" is

Cim't)

q1(l,r,C)
int C[];
{? l<r — {; split(l,r,C,mid),
{ll a1(,mid —1,C), ql(mid + 1,r,C)}
}

Execution of split(l,r,C,mid) permutes C and assigns a value to mid such
that | < mid < r, and such that all elements in C[l,...,mid — 1] are at most
C[mid], and all elements in C[mid +1,...,r] exceed C[m:d].

Operation of the Program If [> r, then ¢l takes no action, leaving C
unchanged. If | < r, then split is called, and after split terminates execution,
C[l,...,mid — 1] and C[mid +1,...,r] are sorted in parallel.

77

Reasoning About the Program First check that shared mutables in par-
allel composition are not modified. Array C is shared by ¢1(I,mid —1,C) and
ql(mid + 1,7,C), but no element of C is shared by both blocks. Hence the
restriction on parallel composition is satisfied.

We reason about the program by induction on r — L.

Base Case: If r —1 <0, then C is left unchanged, and this is correct
according to our specifications.

Induction Step: Assume that ¢q1(l,r,C) is correct for all [, r, and C
for which r — I < k, for some k > 0, and prove that the program is correct
forr—1=k+1. If r—1=k+1thenl < r. In this case split is called,
and execution of split(l,r,C,mid) permutes C and assigns a value to mid
such that [< mid < r, and such that all elements in C[l,...,mid — 1] are
at most C[mid], and all elements in C[mid +1,...,r] exceed C[mid]. Hence,
mid —1—1<k, and r — (mid + 1) < k. From the induction assumption,
q1(l,mid — 1,C) and ¢1(mid + 1,r,C) are correct, and sort C[l,...,mid — 1]
and C[mid + 1,...,r]. Therefore, C[l,...,r] is sorted correctly.

Program split

split(l,r,C,mid)
int C[], left, right, temp;
{?1<r —

{; left:=1+1,right:=r, s=C[l],
partl(l,r,C,s,left,right), temp = |,
swap(temp, right,C), mid = right

}

}

Operation of the Program If [> r then split terminates execution with-
out taking any action. If [< r, then program split(l,r,C,mid) calls

partl(l,r,C,s,left,right) after setting left = I+ 1, right = r and s = C[l];
program part leaves s unchanged, modifies left and right, and permutes ele-
ments of C[l + 1,...,7] so that, at termination of partl, left = right + 1,

78

and all elements in C[l + 1,...,right] are at most s, and all elements in
Clright +1,...,r] exceed s.

After termination of partl, program swap is called to exchange C[l] (which
is s) with C[right]. After the swap, all elements in C[l,...,right — 1] are at
most s, and C[right] = s, and all elements in C[right+1,...,r] exceed s. The
program terminates after mid is defined as right.

Program partl Program partl moves left rightwards and moves right left-
wards until they cross (i.e., left = right + 1), so that the following invariant
is maintained:

invariant:

l+1<left<r+1andl < right <r,and

all elements of C[l +1,...,left — 1] are at most s,
and all elements of C[right +1,...,r] exceed s.

From the invariant it follows that left < right + 1.

partl(l,r,C,s,left,right)
int C[], left, right;
{? left <right — {;
{ll leftrightwards(r,C,s,left),
right_leftwards(l + 1,C, s, right)
h

left < right — {; swap(left,right,C),
left:=left+1,
right := right — 1
h
- partl(l,r,C,s,left,right)
}
}

left_rightwards(r,C, s, left)
int C[], left;
{? left<r, Clleft}] <s —

79

{; left:=left+1, left rightwards(r,C,s,left)}
}

right_le ftwards(l,C, s,right)
int C[], right;
{? right > 1, Clright] > s —
{; right :=right — 1, right_leftwards(l,C,s,right)}

swap(t, j,C)
int 4, j, C[], temp;
{; temp:= C[i], C[i] := C[j], Clj] := temp}

Operation of the Program The invariant holds initially because left =
[4+ 1 and right = r. Programs left_rightwards(r,C, s,left) and
right le ftwards(l+1,C, s,right) are executed in parallel. The only mutables
that change value in these programs are left and right, and these mutables
are not shared. Therefore, the restriction on parallel composition is satisfied.
Program left_rightwards(r,C, s,left) moves left rightwards from [+ 1,
i.e., it increases left, until left = r + 1 or C[left] > s, and it maintains the
invariant. Likewise, right_le ftwards(l + 1,C, s,right) moves right leftwards
from r, i.e., it decreases right, until right = l or C[right] < s, and it maintains
the invariant. If left = r + 1 or right = [then left > right, and the program
terminates execution. Consider the case where C[right] < s < C[left], and
left < right at termination of the parallel composition block. In this case,
C[left] and C|[right] are exchanged, and then left is incremented and right
is decremented, maintaining the invariant. Then partl is calls itself.

Reasoning About the Program We reason about the program by induc-
tion on right + 1 — left.

Base Case: Consider the case where right + 1 — left = 0. In this
case the program terminates. If the invariant holds, the program terminates
correctly. (The program may not terminate correctly if the invariant does not

hold.)

80

Induction Step: Assume that the program is correct, for all parameters
provided right+1—left < k, for some k > 0, provided the invariant holds when
the program is initiated, and prove the program correct for right + 1 —left =
k + 1 provided the invariant holds when the program is initiated.

If right + 1 — left = k + 1 then left < right. In this case the parallel
composition of right_le ftwards and left_rightwards maintains the invariant
and decreases right + 1 — left, or it leaves left and right unchanged. In the
latter case, C[right] < s < C[left], and therefore, C[left] and C[right] are
exchanged, and then left is incremented and right is decremented, maintaining
the invariant, and reducing right + 1 — left. Therefore, when partl is called
recursively, the invariant is maintained, and right + 1 — left < k. From the
induction assumption, the recursive call to partl terminates execution with
the correct values for C, left and right.

18.9 Programs with Programs as Parameters

Let m be a mutable tuple. Let ¢ be a mutable tuple, and let the value of ¢ be
the representation for a program call, i.e., the value of ¢ is f(argo,...,arg),
or equivalently, the value of ¢ is {"f",argo,...,arg:}, where f is the name of
a program. We shall develop a program amt(i,m,t) that executes {; i :=
mlj], t} for each index j of m, in sequence for j going from 0 to sizeof(m)—1.

For example, if m is a 3-tuple, the execution of amt(k,m, close(k)) causes
the following sequence of commands to be executed:
k := m[0], close(k), k := m[1], close(k), k := m[2], close(k).

Consider another example: If v is a 2-tuple, the execution of amt(j,v, g(4,b,7))
causes the following sequence of commands to be executed:
j= 'U[O], g(j, b:j)s J= ‘U[l], g(]) ba])

The name amt stands for all elements of a mutable tuple. Programmers
find it helpful to develop similar higher-order programs for all elements of lists,
trees, and other data structures.

amt(i,m,t)

int 7, n;

tuple 2, m, {;

{; n:= SiZCOf(m), 1:=0, fmt(i’j) n,m, t)}

81

fmit(i, j,n,m,t)

int 7, n;

tuple z, m, t;

{7i<n - {; 1= mlj], ¢, j:=7+1, fmt(i,j,n,m,t)}

}

Program amt has two local integers, n and j. Initially, n is sizeof (m), and
j is 0. Program amt calls fmt(i,j,n,m,t) that repeatedly executes {; i :=
m|[j],t}, for increasing values of j while j < n.

Next, consider an application of amt. Let close be a program with a single
argument ¢ where i is a mutable tuple {w} , where w is a permanent. Program
close defines w to be the empty list. Program close is:

close(?)
tuple ¢;
{Tid{o} - v=(]

Let m be a tuple, each element of which is a mutable tuple of the form {w},
where w is a permanent list. The call amt(i,m,close(i)) causes close to be
executed with each element of m as its argument. For example, let m be {a, b},
where a and b are mutable tuples, and the values of a and b are {u} and {v},

respectively, where u and v are permanent lists. The call amt(i, m, close(?))
defines both u and v to be the empty list [].

18.10 A Distributor

Program distributor has two arguments z and m, where z is a permanent
list, and m is a mutable tuple. Permanent z is not modified by distributor.
Mutable tuple m is an input-output argument of distributor. Each element
of list z is a two-tuple {7,msg}, where ¢ and msg are permanents, and :
reduces to an integer, where 0 < i < sizeof(m). Each element m[i] of m is
of the form {w} where w is a permanent list. The distributor inspects each
element {i,msg} of its input list z, in order, and places msg on w where
m[i] = {w}. Operationally, the program reads an input stream of messages z,
and distributes the incoming messages to one of sizeof(m) output streams of
messages; the output stream on which a given message is placed is specified
by the index ¢ in the incoming tuple {z,msg}.

82

distributor(z,m)
tuple m;
{t == [{i,msg} | zs), mf] = {w} -
{; w=[msg|ws], m[i] = {ws}, distributor(zs,m)},
z =[] — amt(i,m,close(i))

}

Operation of the Program If z is the empty list, program amt(i, m, close(t))
defines the output list w within tuple m[i] to be the empty list, for all :. If z is
nonempty, then it is of the form, {i,msg} where m[i] is of the form {w} and w
is a permanent; let the tail of z be zs. In sequence, define w to be [msg | ws],
where ws is undefined, then the mutable tuple m[i] becomes {ws}, and then
distributor(zs, m) is called.

Reasoning About the Program We reason about the program by induc-
tion on the length of z. The reasoning is straightforward, and is left to the
reader.

18.11 Mutable Linked Structures

Operations on mutable linked structures in PCN are similar to operations on
linked structures in C, except that mutable tuples are used in place of pointers.

We shall develop programs to search, add elements to, and delete elements
from, a mutable linear linked list. Each element of the mutable linked list is a
3-tuple {z,v,y}, where z is the key field, v is the info field and y is the nezt
tuple in the list (if there is a next tuple), or the empty tuple if there are no
later tuples. Variables z and v are permanents. (The program can be modified
to handle mutable z and v by declaring the variables.) For convenience we use
the following macro definitions key = 0, info =1, and nezt = 2.

A mutable linked list m with two members, where the first member has
key "steve" and info field “anna", and the second has key "alain" and info
field "mariann" is as follows: the value of m is {"steve","anna",a}, where
the value of a is {"alain","mariann" b}, where the value of b is {}.

83

Searching Mutable Linked Structures Program search has two input
parameters m and z, and one output parameter z. Parameter m is mutable,
and z and z are permanents. Parameter m is a mutable linear linked list.
Parameter z is a key. The program sets z to be the contents of the info field
of the first tuple in m containing key z, if there is such a tuple; if there is no
tuple with key z in m the program sets z to {}.

In our example, the call search(m,"steve",z) will set z to "anna", and the
call search(m,"sharon",z) will set z to {}.

search(m,z, z)

tuple m;
{? sizeof(m) == —z={},
sizeof(m) # 0,m[key] # = — search(m[nezt], z, z),

sizeof(m) # 0,m[key] ==z — z =mlinfo]

}

Operation of the Program

1. If m is the empty list, then define z to be {}, as required by the specifi-
cation. (This is the base case in an induction on the length of m.)

2. If m is nonempty then it is a 3-tuple. If m[key] is different from z
then keep searching, and if m[key] = z, then define z as m[info] and
terminate execution.

We reason about the program by induction on the length of m.

Adding Elements to Mutable Linked Structures Next, we present a
program to add an element with key field k and info field z immediately after
tuple [in the list. Here k and z are permanents that are not modified by the
program, and ! is an input-output mutable tuple.

addtolist(l, k,z)
tuple [, w;
{? Sizeof(l) ==0— {; w = {}vl = {k,:z:,w}},
sizeof(1) #0 — {; w := l[nezt], l[next] := {k,z,w}}
}

Operation of the Program If /is the empty list when the program is called
then [becomes the list {k,z,w} where w is the empty list. If [is nonempty,
let the tuple that follows ! when the program is called, be w. We want to place

a tuple with key k and info z after ! and before w. Therefore, set I[nezt] to
{k,z,w}.

Deleting Elements from Mutable Linked Structures Next, we present
a program to delete an element from the list. Program delete has three ar-
guments: a mutable list m, a key d, and a boolean found. Argument m is
an input-output mutable linked list, d is an input permanent, and found is
an output permanent. If m contains a tuple with a key d then the first such
tuple is deleted from list m, and found is set to true. If m does not contain a
tuple with key d, then delete does not modify any variable, and found is set
to false. Program delete calls program cut which has four arguments, p, ¢, d
and found, where d and found are as before, and ¢ is the tuple that follows
p in list m.

The operation of program cut is as follows. If ¢ is the empty list then
found is set to false; if q is nonempty and the key in tuple q is d then found
is set to true and ¢ is removed from the list. If the key in tuple q is not d then
p becomes ¢ and then g becomes p[nezt], thus p and ¢ move down the list by
one tuple. Program delete calls cut with p = m and ¢ = p[nexzt].

Tuple ¢ is removed from the list by executing the assignment p[nezt] :=
g[next).

delete(m,d, found)

tuple m, p, ¢;
{? sizeof(m)==0 — found = false,
stzeof(m) #0 — {; p:=m,
:= plnexzt],
cut(p,q,d, found)
}
}
cut(p, ¢, d, found)
tuple p, ¢;

85

{7 sizeof(q) #0, qlkey) #d — {; p:=g, ¢:= plnezt], cut(p,g,d, found)},
sizeof(q) #0, gqlkey] ==d — {; plnezt] := g[nezt], found = true},
sizeof(q) == — found = false

}

18.12 Distributing to Arbitrarily Many Destinations

In this section we shall describe a program which is a generalization of the dis-
tributor given earlier. In program distributor, a stream of messages is farmed
out into n streams, where n is constant; the messages on the incoming stream
are associated with integers which indicate which output stream the messages
should be directed towards. Next, we develop a program dist in which the in-
coming stream is farmed out into a variable number of output streams. Each
incoming message is associated with a key, and the key indicates the output
stream that the incoming message should go out on. The incoming stream
can have command messages that add or delete keys. (Anthropomorphically,
the distributor is similar to a secretary who puts messages into pigeon-holes
depending on the name of the addressee. People can change pigeon-holes, or
leave, or new people can get pigeon-holes.)

Program dist has an input argument z which is a permanent list, and an
input-output argument m which is a mutable linear linked list of tuples as in
the previous program. The info field of a tuple is a mutable tuple ¢ where the
value of t is {z}, where z is a permanent list. (In anthropomorphic terms, =
is the name of the pigeon-hole and the corresponding key is the name of the
person who owns that pigeon-hole.) The elements of list z are :

1. tuples of the form {k,b} where k is a key, and b is arbitrary, or
2. add(k,z) where k is a key and z is an undefined permanent, or

3. del(k, found) where k is a key and found is an undefined permanent.

Program dist inspects the elements of the input list z in sequence. If the next
element of z is a tuple of the form {k, b}, then it searches m for a tuple with
key k; if it finds a tuple {k,¢,nez}, for arbitrary nez and where t = {z}, then
it places b on list z; if it does not find such a tuple in linked list m then it
takes no action.

86

If the next element of z is add(k,z) then it adds a tuple with key k and
info t, where the value of ¢ is {z}, to linked list m. If the next element of z is
del(k, found), then it searches for a tuple with key k in m, and if it finds one,
the tuple is deleted and found is set to true; if it does not find such a tuple
then found is set to false.

dist(z,m)

tuple w, m;

{7 z< [{k,b} | 2s] — {; search(m,k,w),
w={z} > {; ¢ =[b]|zs], wi={as}},
dist(zs,m)

h
2 = [add(k,) | 23] = {; w:={z},

addtolist(m, k, w),
dist(zs,m)

}h
z= [del(k, found) | zs] — {; delete(m, k, found), dist(zs,m)},
z= [] — aml(z,m, close(i))

}

Programs addtolist and delete given earlier were for tuples in which the info
field was a permanent; these programs must be modified for the case where the
info field is a mutable tuple (by declaring the tuple appropriately). Program
aml is similar to program amt; the difference is that am! operates on a mutable
linked list while amt operates on a mutable tuple. We leave the development
of aml to the reader.

87

19 Instructions About Where to Execute Pro-
grams

For purposes of efficiency, programmers may want to specify the processors
on which programs are to be executed. For this purpose the annotation ‘@’
is added as a suffix to the program call [6]. Specifying processors does not
change the semantics of programs.

The syntax of an annotated program call is:

program-call :: program-call@location
location :: variable | integer | relative-location

The description of relative-location is found later in this section.

A PCN program runs on a computer in which processors are numbered
0...n, where 0 is the host machine. A program p can be executed on a
processor numbered 2, for any integer ¢ where 0 < z < n by executing p@: or
pQu, where v is a variable with reduced value .

PCN can execute on a network of processors where the topology of the
network can take any form: It can be a local area network connecting work-
stations, or a hypercube, or a mesh, to name a few examples. Programmers
find it convenient to develop their programs for a given topology, and to have
their topology mapped to that of the machine on which their programs exe-
cute [6]. As in Strand [6], a virtual network of processors can be defined by
including the annotation machine(topology) at the head of a file, where, in the
current implementation, topology is ring or torus, where a ring is a circular
list, and a torus is restricted to two dimensions. At most one virtual network
can be defined for a source file.

The processor in the virtual network at which a program is to be executed
can be specified by appending @relative-location to the program call, where for

88

a

ring: relative-location can be fwd for forward, bwd for backward, or random;
torus: relative-location can be north, east, south, west, or random.

The relative-location specifies a processor in the virtual network by specifying
its relationship (forward, backward, north, south, east, west, or random) with
respect to the processor executing the parallel composition block. For instance,
execution of a parallel composition statement {|| p(left)@bwd, p(right)@ fwd}
in a processor ¢ in a virtual ring would cause p(left) and p(right) to be
executed on the processor following ¢ and preceding g, respectively, on the
virtual ring.

The relative-location at which a program p(...) is to be executed can be
specified at run-time by executing the statement p...)@'z, where z is a per-
manent. Execution of p(...)@'z, is as follows:

repeat skip until z is reducible;
execute p@loc where "loc" is the reduced value of z.

For instance, if the reduced value of z is " fwd", then p(...)@'z is executed as
p(...)Qfwd.

If a program call is executed in an address space then the called program
will not be executed in another address space if any argument of the called
program is a mutable. (See the section called Architectures, Efficiency and
Implementation.) Also all blocks composed using interleaved composition ex-
ecute on the same processor, except for blocks that do not reference mutables.

89

20 Compilation and Modules

Collections of related PCN programs are written in files, for convenience. All
PCN programs can be put in a single file, but it is usually more convenient to
partition programs in some logical maner, and put each set of related programs
in a separate file [6]. A file containing PCN programs is called a module, and
the name of the file is also the module name. The syntax of a module is:

module:: -exports(< program-name >)
-foreign(< library-name >)
=< program >

where program-name is the name of one of the programs in the module, and
library-name is the name of a library containing C object code, and all names
are quoted.

An example of a module is:

-exports("member", *“sum")
-foreign("algebra", "diffeqns")
.... definition of programs including member and sum ...

A program p within a module m can be called by programs in other modules
if and only if the name p appears in the -exports(...) statement in module
m. A program in a module references a PCN program in another module by
prefixing the name of the referenced program with the name of the module
in which the referenced program is located, followed by the symbol ‘:’. For
instance, a program in a module B references a program p in another module
D as D:p. A program references another program in the same module without
the ‘module-name:’prefix.

PCN programs can also call C (and in later releases, Fortran) programs.
Consider a PCN program p that calls a C program f that appears in a library
L. The module in which p appears must have library L declared as foreign,
by including L in the -foreign(< library-name >) statement that appears
in the module.

A PCN source file can begin with macro definitions and file inclusion state-
ments. A macro replaces a name in the the text file by a string of characters,

90

as in C. The syntax of a macro-definition is:

#define variable name replacement_string

where replacement_string is the sequence of characters (excluding trailing blanks)
on the remainder of the line. As in C, a line in a PCN source file of the form
#include "filename" is replaced by the text of the file called ”filename”.

91

21 Acknowledgment

The PCN project is a team effort. Institutions that have participated in the
effort include the Center for Research in Parallel Computation, California
Institute of Technology, Argonne National Laboratories and Aerospace Cor-
poration. Enhancements to PCN are planned with participation from Rice
University and Los Alamos National Laboratories.

Scientists who have contributed to the PCN project include Sharon Brunett,
Jan Lindheim, Dave Long, Dong Lin, Berna Massengill and Seth Noble at Cal-
tech, Ian Foster and Steve Tuecke at Argonne, and Joe Bannister, A. Campbell,
Ray Chowkwanyun, Mel Cutler, Melody Hancock, Carl Kesselman, Craig Lee
at Aerospace Corp. lan Foster played a major role in the development of the
notation. A sizable part of the compiler and run-time system was developed at
Argonne by Ian Foster and Steve Tuecke. A programming environment with
a variety of support tools is being developed at Aerospace Corp. The devel-
opment of PCN has been aided by applications written in PCN for weather
modeling and DNA sequence matching at Argonne, computing trajectories of
space vehicles and tracking objects in space at Aerospace, and Taylor-Couette
flows at Caltech. We are grateful to scientists who have given of their time in
helping develop PCN applications, particularly to Herb Keller at Caltech.

We are grateful to our sponsors at the National Science Foundation, the
Air Force Office of Scientific Research and the Office of Naval Research for
their support and advice; in particular, we wish to thank Nat Macon, Harry
Hedges, Charles Holland and Andre van Tilborg.

Many ideas in PCN are derived from ideas in UNITY and STRAND.

92

References

[1] Aho, A.V., J. E. Hopcroft, and J. D. Ullman, Addison-Wesley, Data Struc-
tures and Algorithms, Reading, Massachusetts.

[2] Campbell, A., R.M. Chowkwanyun, C.F.Kesselman, C. A. Lee, and S.
Taylor, ‘A Database System to Support the Program Composition Envi-
ronment’, Aerospace Corp., Report No. TOR-0090(5920-05)-1, April 1990.

[3] Chandy, K. M., and J. Misra, Parallel Program Design: A Foundation,
Addison-Wesley, Reading, Massachusetts, 1988.

[4] Chandy,K.M., and S.Taylor, ‘The Composition of Concurrent Programs,’
in Proceedings Supercomputing ‘89, Reno, Nevada, Nov.13-17, 1989, ACM.

[5] Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, New Jersey, 1976.

[6] Foster,l., and S.Taylor, Strand, New Concepts in Parallel Programming,
Prentice-Hall, 1989.

[7] Foster,l., and S.Taylor, ‘A Portable Run-Time System for PCN’, Argonne
National Laboratory Report No. ANL/MCS-TM-137, January 1990.

[8] Hoare, C.A.R., Communication Sequential Processes, Prentice-Hall Inter-
national, London, U.K., 1984.

[9] Hoare, C.A.R., ‘Quicksort,” Computer J., Vol.5, No.1, pp10-15, 1962.

[10] Seitz, C.L., and J. Seizovic, and W. Su, ‘The C Programmer’s Abbrevi-
ated Guide to Multicomputer Programming’, Caltech Computer Science
Technical Report Caltech-CS-TR-88-1, 19 January 1988, revised 17 April
1989.

[11] Shapiro,E., ‘The Family of Concurrent Logic Programming Languages,’
in ACM Computing Surveys, Vol.21, No.3, pp412-510, September 1989.

93

