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1 Introduction

We consider solution of the two-dimensional Navier-Stokes equations in the periodic

domain of Fig. 1:
Ou

Bt +u-Vu = —-Vp+ g Viu + f(t)&
Vau = 0
subject to,
u = 0 on 601, 692, and 3Q3

u(0,y,t) = U(L,y,t) )
p(o)y)t) = P(L:y)t)

(1)

(@)

Equation (1) is nondimensionalized with respect to channel half-height, k, and the
centerline velocity which would arise in laminar plane Poiseuille flow in the absence
of the cylinder for the same given flow rate, resulting in a Reynolds number defined

as: .
Re = ,

N
<i

A

where

_ 1 2k p
V = 2—};_/; ‘Ul(z,y:t) Y
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Figure 1: Eddy-promoter flow geometry: L = 6.666h, b = 0.5h, cyl. dia. = 0.4h.

The forcing term, f(¢)é:, corresponds to a mean pressure gradient driving the flow
in the & (+z) direction. The functional form of f(t) is chosen to enforce V to be
constant with respect to time.

2 Numerical Formulation

Temporal discretization of (1) follows the fractional step method of [1,2], which leads
to a series of elliptic problems to be solved at each time step by conjugate-gradient
iteration. The method has been developed in such a way that it is readily implemented
on distributed- or shared-memory parallel computers; we discuss these considerations
in Section 4.

The fractional-step formulation is comprised of three computational steps. Begin-
ning with explicit treatment of the nonlinear terms, compute i:
a—u"
At

Here, C™ is taken to be an explicit representation of the nonlinear convective terms,
in this case given by a 3rd order Adams-Bashforth discretization:

n __ 23 n n 16 n-1 n-1 5 n-2 n-2
c" = Th Vu The Vu + v -Vu . (6)

Next, compute the pressure correction:

=C" 4 fmtlg; . (5)
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Finally, compute the viscous correction:

The method is first order accurate in time [3]. The most numerically intensive steps
are the (iterative) elliptic solves, with the Neumann problem for pressure (7) having
significantly slower convergence than the Helmholtz equations (8) for the viscous
terms.

To ensure that the constant mass flux condition is satisfied at t**!, we recognize
that, as formulated in (5-8), u™*! is linear in f"*!. Therefore, we can decompose
(5-8) into two sub-problems, one for which frt! =0, and one for which u®,C" = 0.
Thus, we first solve (5-8) for:

u = uw(u"=0,C*=0,f"*'=1) . (9)
Second, we compute:
att = §"*(u",C, M =0) . (10)
Finally, we update u™*! as:
u"t! = it taut (11)

where « is a scalar such that the desired mean flow, V, is obtained at t"**!. Note
that the advantage of the splitting (9-11) is that (9) is independent of time (though
not independent of At), and needs only be solved for u* once in a preprocessing step,
which can then be stored.

In all cases, we take as our initial condition:

uy(z,9,t=0) = y(2-v) (12)
uy(z,y,t=0) = 0

This initial condition is not divergence free due to the presence of the cylinder, but it
offers the advantage of avoiding thin shear layers near the walls during startup which
would necessitate additional spatial resolution.

Spatial discretization is based upon the spectral element method [4,5] which is a
high-order weighted residual technique in which the domain is broken up into rela-
tively few, macro- (spectral) elements, and the geometry, data, and solution within
each element are approximated by tensor-product polynomial basis functions. A typ-
ical decomposition of the eddy-promoter geometry is shown in Fig. 2. C° continuity
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is imposed across element interfaces and convergence is achieved through increased
(polynomial) order of approximation within each element.

The above temporal discretization (5-8) leads to a series of elliptic sub-problems
to be solved at each time step which are cast in the weak form:

Findu € H3(Q) such that

[ V8u + Yguda = [ erda vee r@), (13)

where the space H} is the space of all functions which have a square integrable first
derivative and are zero on the boundary.

The spectral element method proceeds by subdividing the domain, §, into K
elements, O, which are mapped to the square (z,y)lm — (r,s) € [-1,1]%. The
solution, data, and test functions are expressed as tensor-product polynomials in
(r,s) of degree < N with respect to each variable. Thus, the discrete represenation
of u takes the form:

N N
u(z, )| | = DX hhelr)hls) (14)

p:O q=0

The Legendre spectral element method in R? employs Lagrangian interpolant bases
hi(£) satisfying hi(¢;) = 8ij, where the grid points ¢; are the Gauss-Lobatto-Legendre
points. The polynomial coefficients uf, = u*(ry, s,) are therefore the grid values of
u in element k. Gauss-Lobatto quadrature assures accurate approximation to the
integrals in (13). Further details of the spatial discretization and formulation of the
elliptic problems can be found in [5].

Figure 2: Spectral element mesh (K = 33) for the eddy-promoter geometry of Fig. 1
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3 Iterative Solvers

The above discretization leads to a linear system of equations of the form:
Au = Bf |, (15)

where A is taken to be the discrete Laplacian (for the case A = 0), B the diagonal
mass matrix, u and f the (global) discrete representation of the solution and data
respectively. Due to memory, operation count, and parallelization considerations,
iterative methods are used to solve the system (15). Such methods are dependent
upon repeated evaluation of matrix-vector products of the form r = Au, where u and
r are intermediate vectors associated with successive iterations.

For spectral element problems in higher space dimensions R? the linear opera-
tors have large bandwidth and, if formed explicitly, are non-sparse with O(KN*)
entries. The subsequent operation count and memory requirements can be signif-
icantly reduced if the matrix-vector product Au is evaluated element by element,
using a factored form in which the discrete derivatives associated with the gradient
operators in (13) are applied in a sequential fashion. A typical term in the elemental
matrix-vector product A*u* for the case of d = 2 is:

N N
E Pr; DP'(E Dm":J) V",J € {0’ "°1N}2 (16)

p=0 ¢=0

where p;; is the quadrature weight associated with the point (r;,s;), and D;; is the
derivative operator,

_  dhj(r)
D;; = ar . (17)

r=rg

The residual evaluation is completed via direct stiffness summation wherein inter-
mediate residual values at nodes shared by multiple elements are summed and redis-
tributed to the elemental data structures. The factored evaluation of Au requires only
O(K N¢) storage and O(K N*!) operations for general isoparametric discretizations.

Our current implementation employs standard Jacobi- (diagonal) preconditioned
conjugate gradient iteration [6]. The preconditioned A system has condition O(K}N?)
implying an iteration count of O(K;N), where K, is the number of elements in a sin-
gle spatial direction. The majority of the computational effort is associated with
evaluation of Au, as all other terms have an operation count of O(KN9) or less.
In addition, two operations require communication of information between elements,
namely, direct stiffness summation and inner-product evaluations of the form r'r.
While these steps require only O(K N4-!) and O(K N¢) operations, respectively, they
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represent the leading order communication terms in the parallel implementation dis-
cussed below.

4 Parallel Implementation

The spectral element discretizations, bases, and iterative solvers of the previous sec-
tions are constructed so as to admit a native, geometry-based parallelism, in which
each spectral element (or group of spectral elements) is mapped to a separate proces-
sor/memory, with the individual processor/memory units being linked by a relatively
sparse communications network. This conceptual architecture is naturally suited to
the spectral element discretization in that it provides for tight, structured coupling
within the dense elemental constructs, while simultaneously maintaining generality
and concurrency at the level of the unstructured macro-element skeleton. The locally-
structured/globally-unstructured spectral element parallel paradigm is closely related
to the concept of domain-decomposition by substructured finite elements.

Our methods are implemented in an essentially machine-independent fashion.
First, we construct a spectral element code in a standard high-level language in which
each spectral element is treated as a “virtual parallel processor”. In particular, each
spectral element is treated as a separate entity, and all data structures and operations
are defined and evaluated at the elemental level. The data and code are descended
to M processors, each operating asynchronously. The only procedures which require
communication are, by construction, the direct stiffness summation associated with
residual evaluation, and vector reduction, which are relegated to special subroutines
to effect data transfer. Processor synchronization is imposed at each iteration by the
communication steps.

The residual calculation Au is the most complex operation in our parallel Navier-
Stokes algorithm. Because of the variational formulation, the required action to up-
date the residual along element interfaces is to first compute an intermediate residual
vector, A¥u*, within each element, and then sum correspondant edge values between
elements. The parallelism in this procedure is quite evident; computation of local
residuals requires O(K N9+!) operations, while the communication between elements
(processors) requires less than O(KN4-!) words to be transmitted, resulting in a
favorable computation to communication ratio of O(N?).

The conjugate-gradient iteration requires evaluation of two inner products which
also require communication. These can be evaluated at a communication cost pro-
portional to log, M on most topologies and any wormhole-connected communication
system. The impact of this term is dependent on the work local to the processors,
the ratio of computation to communication speed of the particular hardware, and
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the number of processors. Typically it is not significant, but it can be a source of
performance degradation for small problems when M is large, and ultimately limits
the speedup possible for a particular problem [7].

We have implemented our algorithms on the Intel iPSC/2-VX hypercube which
is typical of the class of architectures for which the parallel spectral element method
is well suited. The iPSC is a distributed memory, message passing, parallel proces-
sor consisting of M = 2P independent processor/memories, or nodes, arranged on a
D-dimensional hypercube communication network. The iPSC/2-VX is an upgraded
version of Intel’s original iPSC hypercube which incorporates improved “worm-hole”
message routing allowing data to be transferred between non-nearest-neighbor proces-
sors with minimal degradation in data transfer rate, as well as a twenty-fold reduction
in message transfer times, resulting in a single word transfer rate of A(1) ~ 300usec
and an asymptotic rate of A(oo) = 1.4usec [ word. The nodes are based upon Intel
80386/80387 processor/coprocessors with a floating point execution rate of roughly
0.1 MFLOPS, coupled with attached vector processors which achieve 3-4 MFLOPS
on standard vector operations and 10-12 MFLOPS on matrix-matrix products. Typ-
ical performance for the spectral element code is 2-3 MFLOPS per node, including
communication overhead.

5 Results

We have considered three classes of problems: (i) two-dimensional periodic geometry
(e.g. Fig. 1), (ii) two-dimensional flow past 9 successive cylinders with parabolic
velocity profile at inflow and standard Neumann boundary conditions at outflow,
(iii) three-dimensional extensions of Fig.1 with and without endwalls. We briefly
discuss the results of the class (i) and (i) problems, and present computing times for
all three classes.

Numerous simulations have been carried out for the two-dimensional, streamwise
periodic flows, ranging from Re = 0 to Re = 600 [8]. In the range Re > 0 to
Re = Re., the initially transient flow field evolves to a steady state. For subcritical
Reynolds numbers close to Re. the predominant part of the transient takes the form
of an exponentially decaying sine wave, as seen for example in Fig. 3a, which is a
time history of the transverse component of velocity at a point 3 cylinder diameters
downstream of the center of the cylinder for Re = 100. As the Reynolds number
approaches Re., the decay rate decreases; by extrapolating to zero decay rate, we
estimate that Re. = 136. We believe this number to be good to within 5%. However,
non-splitting calculations should be undertaken before passing final judgement.

Above Re,, the flow no longer settles to a steady state. Rather, it transitions
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(c) (d)

Figure 3: Time history traces of transverse velocity component at a point three
diameters downstream of the cylinder center: (a) Re=100, (b) Re=200, (c) Re=600.
Fig. (d) is the comparison between the periodic and inflow-outflow calculation for
Re = 140 at a point 4.166 diameters downstream (of the 6th cylinder for the inflow-
outflow case). The dashed curve represents the difference between the two traces; the
convective nature of the instability can be observed by the sudden termination of the
disturbance for the inflow-outflow configuration at a time t. =~ 50.
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a steady periodic state for Re near Re,, as evidenced by the time history trace of
Fig. 3b for Re = 200. A fit of the saturation amplitude versus Reynolds number for
several Reynolds numbers slightly greater than Re,, showed the saturation amplitude
is to vary as (Re — Re.)®® [9]. Fig. 4 shows a typical streamline pattern at this
Reynolds number, indicating the presence of a travelling wave moving from left to
right, with wavelength A = L/2. Over the range Re = 100 to Re = 200, the Strouhal
number was found to be nearly constant, with a value of St = % = 0.188.

At Re = 600, the flow ceases to exhibit the single mode behavior found at Reynolds
numbers near Re.; Fig. 3c shows the erratic behavior of the velocity signal at the
point of the previous figures.

Experimental results have suggested that the observed two-dimensional instability
is of a convective nature. That is, the disturbance will grow (to a saturated state) in
a frame of reference moving with the flow, but will not be self-sustaining at a fixed
location in a laboratory setup, if there is not sufficient “noise” in the inlet profile. To
examine this possibility, a second set of simulations have been carried out in which
the domain is no longer periodic, but of fixed length, Ly = 9.5L, with an array of
nine successive cylinders to provide a periodic geometric disturbance to the otherwise
plane Poiseuille channel flow, as depicted in Fig. 5. A parabolic inlet profile was
specified, with the usual Neumann outflow boundary conditions on velocity at the
exit [9].

With initial conditions identical to those for the periodic case, time history traces
behind each of the cylinders was found to be identical (as shown in Fig. 3d) to
the periodic results up to a time t. ~ I /V, at which point the signal would fall off

—— /’N_/_/
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Figure 4: Streamlines for the supercritical Reynolds number Re = 200 reveal the
travelling wave nature of the instability, with wavelength A = L/2.






Figure 5: Multi-cylinder geometry (K = 315) and resultant streamlines for Re = 160.

rapidly to a constant value. Here, [ is the distance downstream of the first cylinder.
It is, in principle, possible to increase I to the point where 2. will be greater than
the time required to reach a saturated periodic state. Thus, one can conclude that
the periodic simulations discussed above provide relevant analysis for this physically
realizable situation. Furthermore, in the presence of noise, experimental results [10]
suggest that the periodic solution appears relatively quickly downstream.

6 Timings

We present in Table 1 the run time required for several of the test cases considered. All
problems were computed on the Intel iPSC/2-VX, save case (a), which was solved on
a DECStation 3100. Case (a) is a steady Stokes flow calculation which is discretized
using consistent spaces for the velocity and pressure and which is solved using the
Uzawa algorithm [5]. Case (e) is the nine cylinder calculation. For this problem,
the CPU time per time-step, per processor, is roughly 15 times that required for the
corresponding single cylinder case, (c). This is consistent with the increased number
of degrees of freedom and increased condition number of the system matrices, as
well as the counter-balancing effect of increased efficiency obtained due to the larger
amount of work per processor required for the multi-cylinder case.

Case [ Re [d| K | N | tfina | #time-steps ;“Tw“"_'—‘f‘— #-procs | CPU (hrs)
a 0 |2] 39§10 00 1 228. DEC .063
b 100 2| 39 { 10| 95.5 26920 2.45 8 18.3
c 160{ 2] 33 | 8 | 200.0 40000 2.50 8 28.0
d 600 | 2| 39 | 10 | 200.0 79280 2.85 8 62.7
e 1602 315] 8 | 82.5 16540 18.8 16 86.5
f 150 | 3| 99 | 8 | 200.0 40000 25.2 32 280.

Table 1: Computer performance for the eddy promoter problem.
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