Applications of Adaptive
Data Distributions

E. F. Van de Velde
J. Lorenz

CRPC-TR90048
April, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Applications of Adaptive Data Distributions
by

Eric F. Van de Velde and Jens Lorenz

Applications of Adaptive Data Distributions *

Eric F. Van de Velde
Applied Mathematics 217-50
. Caltech
Pasadena, CA 91125

Abstract

Continuation methods compute paths of solutions of non-
linear equations that depend on a parameter. This paper
examines some aspects of the multicomputer implemen-
tation of such methods. The computation is done on the
Symult Series 2010 multicomputer.

One of the main issues in the development of concurrent
programs is load balancing, achieved here by using appro-
priate data distributions. In the continnation process, a
large number of linear systems have to be solved. For
nearby points along the solution path, the corresponding
system matrices are closely related to each other. There-
fore, pivots which are good for the LU-decomposition of
one matrix are likely to be acceptable for a whole segment
of the solution path. This suggests to choose certain data
distributions that achieve good load balancing. In addi-
tion, if these distributions are used, the resulting code is
easily vectorized.

To test this technique, the invariant manifold of a sys-
tem of two identical nonlinear oscillators is computed as
a function of the coupling between them. This invariant
manifold is determined by the solution of a system of non-
linear partial differential equations that depends on the
coupling parameter. A symmetry in the problem reduces
this system to one single equation, which is discretized by
finite differences. The solution of this discrete nonlinear
system is followe @?lﬁl}%’gqupling parameter is changed.

1 Intrdductidf,l.l,w,

Concurrent programming is difficult and needs to be sim-
plified. This simple statement describes a major goal of
research into concurrent computing. The focus on sim-
plification is justified, because the accumulated experi-
ence of earlier feasibility studies is overwheimingly posi-

*This research is supported in part by Department of Energy
Grant No. DE-AS03-76ER72012. This material is based upon work
supported by the NSF under Cooperative Agreement No. CCR-
8809615. The government has certain rights in this material.

249
0-8186-2113-3/90/0000/0249$01.00 © 1990 |EEE

" signment:

Jens Lorenz

Department of Mathematics and Statistics

The University of New Mexico
Albuquerque, NM 87131

tive. These feasibility studies required machine-dependent
program and problem reformulation. To raise the concur-
rent technology from the level of feasible to that of usable,
much of current research focuses on simplification of the
concurrent-programming task.

At the heart of most efficient concurrent programs is
data locality: the data is stored in memory locations
“near” the processor using the data. To achieve data lo-
cality, a data distribution must be introduced. In general,
that is a task the programmer must perform, because the
best data distribution is determined by global considera-
tions not accessible to analysis by low-level system com-
ponents (hardware, operating system, and compiler).

This is illustrated by the following simple example of
matrix-vector multiplication. Let A be an M x N matrix,
and x and y vectors of dimension N and M, respectively.
The assignment:

y = Ax (1)

requires the evaluation of a matrix-vector product. If
this were a self-contained program, not part of a larger
program, the optimal data distribution and correspond-
ing optimal program is easily derived. The rows of the
matrix A should be distributed evenly (within divisibility
constraints) over all concurrent processes. The resulting
program is optimal, because it is perfectly load balanced
and it requires no communication. Similarly, for the as-
2T :=yTA

(2)

one should distribute the matrix columns. For a compos-
ite program that evaluates both assignments (1) and (2)
neither distribution is optimal. The best distribution dis-
tributes both rows and columns; moreover, the process
grid is a function of the ratio of the number of times (1)
versus (2) is evaluated. Only the user can have a reason-
able estimate of this last quantity; hence, only the user
can determine the best distribution. (We have ignored
the distribution of the vectors for ease of exposition; the
conclusion remains valid if one includes them.)
Supplying the data distribution is thus a user task.

Considering our goal to simplify concurrent program-
ming, supplying the data distribution should be the only
concurrency-related user task. Programming languages
that allow postponing decisions about data-distribution
are under development, see, e.g., Chen [2]. The concept,
however, is independent of particular notations or lan-
guages, and it can be evaluated within existing concur-
rent computing systems (although some overheads are to
be expected as a result). The program discussed in the
remainder of this paper is a realistic illustration of such
an approach to concurrent computing, where the data dis-
tribution is imposed only after the program was fully de-
veloped. In spite of the restriction that all ideas had to
be implemented at the software level, instead of at the
language or compiler level, excellent performance was ob-
tained. To obtain the best performance, a dynamic data
distribution is introduced, which is periodically adapted
to achieve global load balance. In this respect, our ap-
proach differs significantly from conventional paralleliza-
tion strategies that break up programs into small “man-
ageable” pieces, typically program loops, and consider
each as an independent entity. _

An outline of the paper follows. The mathematical as-
pects of continuation and its application to the computa-
tion of invariant manifolds is discussed in section 2. These
aspects are covered only to the extent necessary for un-
derstanding the algorithmic aspects of the program. For a
more detailed treatment, see [12). In section 3, we discuss
the implementation of the program, and in section 4 its

performance.
2 Continuation and Invariant
Manifolds
Consider a system of M equations:
G(u,2)=0 3)

for u € R™, which depends on a parameter A € R. Here,
G:RM xR — RM

is a smooth map. By a solution branch we mean a one
parameter family

~ (u(s),A(s)) e RM x R, 4

of solutions of (3) depending smoothly on some parameter
s € [sq,8). Because of the importance for applications,
many numerical methods have been devised and investi-
gated to compute such branches [6,8]. Assuming that the
branch (4) contains only regular points and folds, one has
to solve linear systems whose matrices have the form:

A b

T 6

Sa <s< s

] € R(M+I)X(M+1) (5)

where A is M x M. The matrix A is singular at folds; the
bordered system, however, is well conditioned.

We use two concurrent solution methods for such bor-
dered systems. Our first method is a variant of Keller’s
bordering algorithm [7] that takes into account the possi-
ble singularity of the matrix A. The second method is a
variant of Goovaerts [5]. Here, we consider only the first
method, which begins by computing an LU-decomposition
of A. Because the matrix A may be singular, partial piv-
oting is often not sufficient, and a more general pivoting
strategy must be used. For simplicity, the only dynamic
pivoting strategy considered here is complete pivoting, but
other dynamic strategies are easily substituted. Once the
LU-decomposition of A is known, the bordered system is
solved using slightly modified back-solves and the solution
of a 2 x 2 system.

Numerical and performance results are given for a —
rather involved — test problem, namely the numerical
calculation of the invariant manifold of a parameter de-
pendent dynamical system:

& = F(v,]).

Here, v(t) € T? x R? and F is a mapping from T? x
R? x [0,)] into R*. (With T2 we denote the standard
2-torus.) The specific example that we have treated is a
system of two nonlinear coupled oscillators, where

v= [90101,r01r1]T

and
w
w
F= 1‘0(1 - rg)
1‘1(1 - 7'%)
—cos 2o + £ (cos(fo + 61) — sin(fo — 61))
A — 08 20 + {2 (cos(fo + 8,) — sin(6; — 6o))

r1(sin(o + 6,) + cos(fo — 61)) — ro(1 + sin 26;)
To (sm(0° + 01) + cos(oo - 01)) - 7‘1(1 + sin 291)

(The value of w is —0.55 in our calculations.) See Aronson,
Doedel, and Othmer [1] for a motivation of this system
and for the study of many interesting bifurcation phe-
nomena. Also, see Dieci, Lorenz, and Russel [3] for a
sequential calculation of some invariant manifolds. =~

In the uncoupled case, A = 0, the system has the at-
tracting invariant 2-torus

MOA=0)={(6,1,1):0€T?*} cT? xR

It follows from general theory (see Fenichel [4] and
Sacker [9]) that the torus persists for a sufficiently small
coupling constant A and that it can be parameterized in
the form:

M(A) = {(6,R(8,)) : 6 € T?},

where 8 — R(0,)) is a function from T? — R?. This
vector function R(-,) is the solution of a first order sys-
tem of partial differential equations, which depends on A.
These partial differential equations are discretized, and a
symmetry is utilized to obtain a finite dimensional system
of the form (3).

From general theory one expects that the tori M(A)
loose more and more derivatives as A increases. The torus
“hreaks” in a certain A-region and disappears. The calcu-
lations in [3] show breaking at about A = 0.2527. In {12},
we compute a solution branch of the discretized system
on a 25 x 25 grid, and we obtain several fold points of this
discrete system between A = 0.2430 and A = 0.2448.

3 Implementation

The concurrent -efficiency of the bordering algorithm is
determined almost exclusively by the efficiency of the LU-
decomposition. The latter, in turn, depends crucially on
an interplay between the pivot locations and the distribu-
tion of the matrix entries over the cogcurrent processes.
In particular, if the pivots are known in advance, the data
distribution can be chosen accordingly, and near ideal load
balance can be achieved. In this case, the algorithm is
also easily vectorized because all active data remain in
contiguous blocks.

Hence, efficiency can be obtained with preset pivots,
but numerical stability will, in general, require a different
pivoting strategy. In our approach these two requirements
are hardly in conflict, because many highly correlated ma-
trices are factored in the course of the continuation proce-
dure. The reasonable belief that the pivot locations can be
kept constant along a whole piece of the branch is indeed
confirmed by our experience. Therefore, both numerical
stability and load balance can be achieved by using a dy-
namic pivoting strategy occasionally (when the growth
factor has exceeded some limit), followed by an adapta-
tion of the data distribution to the new pivot locations.

This data distribution strategy differs from most others
in two essential aspects. First, it takes into consideration
the global behavior of the program, i.e., the fact that the
matrices result from a continuation procedure. Second,
adapting the data distribution to the computation itself
is an integral part of the strategy. In section 4, we shall
see that the combination of these two ingredients leads
to high efficiency. Here, we considgr the implementation
aspects of this strategy. :

Because the data distribution is adaptive and depends
on the global nature of the continuation program, com-
ponent routines like the LU-decomposition and the back-
solve should be written so that they are correct indepen-
dently of the data distribution. For such routines, the
data distribution is part of the input data supplied in the

argument list when calling the routine. We use the LU-
decomposition described in [11] and its companion back-
solve algorithm. To achieve independence of the data dis-
tribution, the LU-decomposition must do all pivoting im-
plicitly (otherwise the data distribution would depend on
the pivots!). In fact, all routines called by our program
must have the property that they are correct indepen-
dently of the data distribution. If we consider these rou-
tines as the components of a library, the necessity for this
property follows from the observation that the writer of
the library routines cannot know the global properties of
the program in which this routine will be used. Hence, the
data distribution cannot be fixed at the time of writing
the library. In fact, our LU-decomposition, matrix-vector
operations, and other related linear algebra routines are
packaged in a data-distribution-independent library. Our
continuation program uses this library and imposes a data
distribution on it at run-time.

To provide maximum flexibility, our LU-decomposition
allows pivoting of both rows and columns. Besides allow-
ing classical pivoting strategies (row, column, diagonal,
and complete), this flexibility also leads to two intrinsi-
cally concurrent pivoting techniques with increased nu-
merical stability and load balance. For details on those
techniques, we refer to [11]. For the discussion of our con-
tinuation program we introduce just one dynamic strat-
egy, complete pivoting, and one static strategy, preset piv-
oting. Complete pivoting is, in general, overkill since nu-
merical stability can be obtained with less expensive piv-
oting strategies. However, complete pivoting ensures that
the pivot locations are highly unpredictable and, hence,
illustrates best the adaptivity of our program. Moreover,
complete pivoting is used only occasionally, i.e., when
the growth factor exceeds a set tolerance. For most LU-
decompositions, we use preset pivots, determined by the
last LU-decomposition with dynamic pivoting. Hence,
the cost of dynamic pivoting is amortized over many LU-
decompositions.

4 Performance

The calculations were performed on a Symult Series 2010
multicomputer with up to 64 nodes. We investigate the
dependence of the execution time on the data distribu-
tion for one LU-decomposition. Here, we used 64 nodes
and an 8 x 8 process grid. As expected, the adapted data
distribution turned out to be superior. We consider also,
for each fixed strategy, the dependence of the execution
time on the number of nodes. We used 2, 4, 8, 16, 32, and
64 nodes, and obtained excellent speedup for each strat-
egy. For absolute performance, we made a comparison
of the sequential version of our code with a fully opti-
mized C-version of the LINPACK benchmark [10]. Due

251

[Pivoting | Distrib. | Time(s) [Spdp. | Efi.(%) |

Complete | Linear 75.3 41.4 64.7
Complete | Random 63.7 49.9 78.0
Complete | Scatter 62.8 46.2 72.2
Complete | Adapted 51.3 54.2 84.7
Preset Linear 48.9 36.9 57.7
Preset Scatter 40.3 42.6 66.6
Preset Adapted 33.3 48.9 76.4
F. Preset | Adapted 29.7 50.0 78.2

Table 1: LU-Decomposition times for a 25 x 25 grid
problem on 64 node Symult Series 2010. Number of
megaFLOPS is based on M3/3 floating point operations,
where M = 252 is the number of unknowns.

to memory restrictions, this comparison was done with a
random 300 x 300 matrix. A sequential version of our fast
preset pivoting algorithm ran about 5% slower than LIN-
PACK. (These 5% result from the fact that we have not
implemented a number of low level optimizations used by
LINPACK.)

We consider the example of section 2 with h = 27x/25,
i.e., the number of unknowns at every step is M = 625.
In Table 1, we present timings for one (typical) LU-
decomposition using complete pivoting and preset pivot-
ing in combination with different data distributions for
the factored matrix. The linear and scatter distributions
are static distributions. The linear distribution allocates
blocks of contiguous rows and columns to processes. The
scatter distribution uses a wrap mapping. The adapted
distribution uses the pivot locations of the previous LU-
decomposition to distribute the current matrix such that
ideal load balance is achieved, if the pivot locations of the
current matrix coincide with those of the previous matrix.
In the version “Fast Preset” of preset pivoting, certain ad-
ministrative overhead is eliminated using the information
that the pivots are preset and that a particular distri-
bution is used. All calculations were done on a 64 node
machine using 64 processes, one process running on each
node. The process grid was partitioned into P = 8 process
rows and Q = 8 process columns.

To test the concurrent performance of our code, we de-
termine the execution time as a function of the number of
nodes. The same example as in Study 1 is computed suc-
cessively using 2, 4, 8, 16, 32, and 64 nodes, and always
choosing the number of processes equal to the number
of nodes, one process running on each node. The num-
bers P and Q of process rows and columas were chosen
equal within divisibility constraints. When the logarithm
of the execution time is plotted as a function of the log-
arithm of the number of processes, ideal speedup is char-
acterized by a straight line with slope —1 if appropriate
scales are used. Figure 1 shows that, for each strategy,

1.0e+07 T Y T

T T T

linear speedup —
complete/linear —o—-
complete/random -+ -
complete/scatter -8--
complete/adapted x--
preset/linear -o--
preset/scatter -% -
preset/adaptive -o-
fast preset -+--
1.0e+06 |

Execution Time (ms)

1.0e+0S

1.0e+04 4 4 L L L 1
0

2 4
log2 (Number of Processors)

Figure 1: LU-Decomposition times for a 25 x 25 grid prob-
lem as a function of number of nodes on a Symult Series
2010.

the execution-time plot is almost parallel to the line char-
acterizing ideal speedup. Table 1 can be used to identify
the individual timing plots.

The problem was too big to run on a one-node machine.
Precise speedups could thus not be calculated. In Table 1,
we give speedups and efficiencies with respect to two-node
timings, i.e., the real speedup is estimated by:

Spq =2« Tz/TpQ,
and the real efficiency is estimated by:

epq = 2*T2/(PQTpq).

Here, T3 is the two-node timing and Tpq is the timing
with P x Q nodes. Speed-up and efficiency are good mea-
sures for the overhead due to communication and load
imbalance.

When varying the data distribution and keeping the
pivoting strategy fixed, it is clear that the adapted data
distribution is the most efficient. This is easily explained
by the increased load balance of the adapted data distri-
bution. This observation holds for both complete pivoting
and preset pivoting.

When comparing efficiencies for the same distribution
but for different pivoting strategies (i.e., in Table 1 com-
pare lines 1 and 5, 3 and 6, 4 and 7), it is seen that
complete pivoting is more efficient. This is because the

252

pivot-search cost leads to a higher ratio of computation to
communication time for complete pivoting than for preset
pivoting.

Another interesting observation, which follows from Ta-
ble 1, is that complete pivoting with the random distri-
bution (line 2) is more efficient than complete pivoting
with the scatter distribution (line 3). The execution time,
however, is lower for the scatter distribution. The ran-
dom distribution is better than the scatter distribution
for load balancing, and hence, has higher efficiency. The
random distribution leads to very irregular memory access
patterns, however, and that causes the absolute execution
time to be larger.

References

[1] D. G. Aronson, E. J. Doedel, and H. G. Othmer.
An analytical and numerical study of the bifurcations
in a system of linearly-coupled oscillators. Physica,
25D:20-104, 1987.

[2) M. Chen, Y.-I. Choo, and J. Li. Coriipiling parallel
programs by optimizing performance. The Journal
of Supercomputing, 2:171-207, 1988.

[3] L. Dieci, J. Lorenz, and R. D. Russel. Numerical cal-
culation of invariant tori. 1989. To appear in SIAM
Journal on Scientific and Statistical Computing.

[4] N. Fenichel. Persistence and smoothness of invariant
manifolds for flows. Indiana University Mathematics
Journal, 21:193-226, 1971.

[5] W. Goovaerts. Stable Solvers and Block Elimination
for Bordered Singular Systems. Report, Rijksuniver-
siteit Gent, Ghent, Belgium, 1989.

(6] H.B. Keller. Numerical Methods in Bifurcation Prob-
lems. Tata Institute of Fundamental Research, Bom-
bay, 1987. ‘

[7] H.B. Keller. Practical procedures in path following
near limit points. In R. Glowinski and J.L. Lions,
editors, Computing Methods in Applied Sciences and
Engineering, North-Holland, 1982.

[8] W.C. Rheinboldt. Numerical Analysis
of Parametrized Nonlinear Equations. Wiley, New
York, NY, 1986. ;

-

[9] R. Sacker. A perturbation theorem for invariant
manifolds and Holder continuity. Journal Mathemat-
ical Mechanics, 18:705-762, 1969.

(10] B. Toy. Private Communication.

[11] E. F. Van de Velde. Ezperiments with Multicomputer
LU-Decomposition. Report CRPC-89-1, Center for
Research in Parallel Computing, 1989. To appear in
Concurrency: Practice and Experience.

(12] E. F. Van de Velde and J. L. Lorenz. Adaptive
Data Distributions for Concurrent Continuation. Re-
port CRPC-89-4, Center for Research in Parallel
Computing, 1989.

253

APPLICATIONS OF ADAPTIVE
DATA DISTRIBUTIONS

Eric F. Van de Velde
Jens Lorenz

Reprinted from PROCEEDINGS OF THE FIFTH DISTRIBUTED MEMORY
COMPUTING CONFERENCE, Charleston, South Carolina, April 8-12, 1990

Applications of Adaptive Data Distributions
by

Eric F. Van de Velde and Jens Lorenz

Applications of Adaptive Data Distributions *

Eric F. Van de Velde
Applied Mathematics 217-50
Caltech
Pasadena, CA 91125

Abstract

Continuation methods compute paths of solutions of non-
linear equations that depend on a parameter. This paper
examines some aspects of the multicomputer implemen-
tation of such methods. The computation is done on the
Symult Series 2010 multicomputer.

One of the main issues in the development of concurrent
programs is load balancing, achieved here by using appro-
priate data distributions. In the continuation process, a
large number of linear systems have to be solved. For
nearby points along the solution path, the corresponding
system matrices are closely related to each other. There-
fore, pivots which are good for the LU-decomposition of
one matrix are likely to be acceptable for a whole segment
of the solution path. This suggests to choose certain data
distributions that achieve good load balancing. In addi-
tion, if these distributions are used, the resulting code is
easily vectorized.

To test this technique, the invariant manifold of a sys-
tem of two identical nonlinear oscillators is computed as
a function of the coupling between them. This invariant
manifold is determined by the solution of a system of non-
linear partial differential equations that depends on the
coupling parameter. A symmetry in the problem reduces
this system to one single equation, which is discretized by
finite differences. The solution of this discrete nonlinear
system is followed as the coupling parameter is changed.

1 Introduction

Concurrent programming is difficult and needs to be sim-
plified. This simple statement describes a major goal of
research into concurrent computing. The focus on sim-
plification is justified, because the accumulated experi-
ence of earlier feasibility studies is overwhelmingly posi-

*This research is supported in part by Department of Energy
Grant No. DE-AS03-76ER72012. This material is based upon work
supported by the NSF under Cooperative Agreement No. CCR-
8809615, The government has certain rights in this material.

0-8186-2113-3/90/0000/0249$01.00 © 1990 IEEE

Jens Lorenz

Department of Mathematics and Statistics

The University of New Mexico
Albuquerque, NM 87131

tive. These feasibility studies required machine-dependent
program and problem reformulation. To raise the concur-
rent technology from the level of feasible to that of usable,
much of current research focuses on simplification of the
concurrent-programming task.

At the heart of most efficient concurrent programs is
data locality: the data is stored in memory locations
“near” the processor using the data. To achieve data lo-
cality, a data distribution must be introduced. In general,
that is a task the programmer must perform, because the
best data distribution is determined by global considera-
tions not accessible to analysis by low-level system com-
ponents (hardware, operating system, and compiler).

This is illustrated by the following simple example of
matrix-vector multiplication. Let A be an M x N matrix,
and x and y vectors of dimension N and M, respectively.
The assignment:

y = Ax (1)

requires the evaluation of a matrix-vector product. If
this were a self-contained program, not part of a larger
program, the optimal data distribution and correspond-
ing optimal program is easily derived. The rows of the
matrix A should be distributed evenly (within divisibility
constraints) over all concurrent processes. The resulting
program is optimal, because it is perfectly load balanced
and it requires no communication. Similarly, for the as-
signment:
z7 :=yTA (2)
one should distribute the matrix columns. For a compos-
ite program that evaluates both assignments (1) and (2)
neither distribution is optimal. The best distribution dis-
tributes both rows and columns; moreover, the process
grid is a function of the ratio of the number of times (1)
versus (2) is evaluated. Only the user can have a reason-
able estimate of this last quantity; hence, only the user
can determine the best distribution. (We have ignored
the distribution of the vectors for ease of exposition; the
conclusion remains valid if one includes them.)
Supplying the data distribution is thus a user task.

where 8 — R(6,)) is a function from T2 — R?. This
vector function R(-,) is the solution of a first order sys-
tem of partial differential equations, which depends on A.
These partial differential equations are discretized, and a
symmetry is utilized to obtain a finite dimensional system
of the form (3).

From general theory one expects that the tori M(})
Joose more and more derivatives as X increases. The torus
“preaks” in a certain \-region and disappears. The calcu-
lations in [3] show breaking at about A = 0.2527. In [12],
we compute a solution branch of the discretized system
on a 25 x 25 grid, and we obtain several fold points of this
discrete system between A = 0.2430 and A = 0.2448.

3 Implementation

The concurrent efficiency of the bordering algorithm is
determined almost exclusively by the efficiency of the LU-
decomposition. The latter, in turn, depends crucially on
an interplay between the pivot locations and the distribu-
tion of the matrix entries over the concurrent processes.
In particular, if the pivots are known in advance, the data
distribution can be chosen accordingly, and near ideal load
balance can be achieved. In this case, the algorithm is
also easily vectorized because all active data remain in
contiguous blocks.

Hence, efficiency can be obtained with preset pivots,
but numerical stability will, in general, require a different
pivoting strategy. In our approach these two requirements
are hardly in conflict, because many highly correlated ma-
trices are factored in the course of the continuation proce-
dure. The reasonable belief that the pivot locations can be
kept constant along a whole piece of the branch is indeed
confirmed by our experience. Therefore, both numerical
stability and load balance can be achieved by using a dy-
namic pivoting strategy occasionally (when the growth
factor has exceeded some limit), followed by an adapta-
tion of the data distribution to the new pivot locations.

This data distribution strategy differs from most others
in two essential aspects. First, it takes into consideration
the global behavior of the program, i.e., the fact that the
matrices result from a continuation procedure. Second,
adapting the data distribution to the computation itself
is an integral part of the strategy. In section 4, we shall
see that the combination of these two ingredients leads
to high efficiency. Here, we considgr the implementation
aspects of this strategy.

Because the data distribution is adaptive and depends
on the global nature of the continuation program, com-
ponent routines like the LU-decomposition and the back-
solve should be written so that they are correct indepen-
dently of the data distribution. For such routines, the
data distribution is part of the input data supplied in the

argument list when calling the routine. We use the LU-
decomposition described in [11] and its companion back-
solve algorithm. To achieve independence of the data dis-
tribution, the LU-decomposition must do all pivoting im-
plicitly (otherwise the data distribution would depend on
the pivots!). In fact, all routines called by our program
must have the property that they are correct indepen-
dently of the data distribution. If we consider these rou-
tines as the components of a library, the necessity for this
property follows from the observation that the writer of
the library routines cannot know the global properties of
the program in which this routine will be used. Hence, the
data distribution cannot be fixed at the time of writing
the library. In fact, our LU-decomposition, matrix-vector
operations, and other related linear algebra routines are
packaged in a data-distribution-independent library. Our
continuation program uses this library and imposes a data
distribution on it at run-time.

To provide maximum flexibility, our LU-decomposition
allows pivoting of both rows and columns. Besides allow-
ing classical pivoting strategies (row, column, diagonal,
and complete), this flexibility also leads to two intrinsi-
cally concurrent pivoting techniques with increased nu-
merical stability and load balance. For details on those
techniques, we refer to [11]. For the discussion of our con-
tinuation program we introduce just one dynamic strat-
egy, complete pivoting, and one static strategy, preset piv-
oting. Complete pivoting is, in general, overkill since nu-
merical stability can be obtained with less expensive piv-
oting strategies. However, complete pivoting ensures that
the pivot locations are highly unpredictable and, hence,
illustrates best the adaptivity of our program. Moreover,
complete pivoting is used only occasionally, i.e., when
the growth factor exceeds a set tolerance. For most LU-
decompositions, we use preset pivots, determined by the
last LU-decomposition with dynamic pivoting. Hence,
the cost of dynamic pivoting is amortized over many LU-
decompositions.

4 Performance

The calculations were performed on a Symult Series 2010
multicomputer with up to 64 nodes. We investigate the
dependence of the execution time on the data distribu-
tion for one LU-decomposition. Here, we used 64 nodes
and an 8 x 8 process grid. As expected, the adapted data
distribution turned out to be superior. We consider also,
for each fixed strategy, the dependence of the execution
time on the number of nodes. We used 2, 4, 8, 16, 32, and
64 nodes, and obtained excellent speedup for each strat-
egy. For absolute performance, we made a comparison
of the sequential version of our code with a fully opti-
mized C-version of the LINPACK benchmark [10]. Due

251

pivot-search cost leads to a higher ratio of computation to
communication time for complete pivoting than for preset
pivoting.

Another interesting observation, which follows from Ta-
ble 1, is that complete pivoting with the random distri-
bution (line 2) is more efficient than complete pivoting
with the scatter distribution (line 3). The execution time,
however, is lower for the scatter distribution. The ran-
dom distribution is better than the scatter distribution
for load balancing, and hence, has higher efficiency. The
random distribution leads to very irregular memory access
patterns, however, and that causes the absolute execution
time to be larger.

References

(1] D. G. Aronson, E. J. Doedel, and H. G. Othmer.
An analytical and numerical study of the bifurcations

in a system of linearly-coupled oscillators. Physica,
25D:20-104, 1987.

[2] M. Chen, Y.-I. Choo, and J. Li. Compiling parallel
programs by optimizing performance. The Journal
of Supercomputing, 2:171-207, 1988.

[3] L. Dieci, J. Lorenz, and R. D. Russel. Numerical cal-
culation of invariant tori. 1989. To appear in SIAM
Journal on Scientific and Statistical Computing.

[4] N. Fenichel. Persistence and smoothness of invariant
manifolds for flows. Indiana University Mathematics
Journal, 21:193-226, 1971.

[5] W. Goovaerts. Stable Solvers and Block Elimination
for Bordered Singular Systems. Report, Rijksuniver-
siteit Gent, Ghent, Belgium, 1989.

[6] H.B. Keller. Numerical Methods in Bifurcation Prob-
lems. Tata Institute of Fundamental Research, Bom-
bay, 1987.

(7] H.B. Keller. Practical procedures in path following
near limit points. In R. Glowinski and J.L. Lions,
editors, Computing Methods in Applied Sciences and
Engineering, North-Holland, 1982.

[8] W.C. Rheinboldt. Numerical Analysis
of Parametrized Nonlinear Equations. Wiley, New
York, NY, 1986.

[9] R. Sacker. A perturbation theorem for invariant
manifolds and Hélder continuity. Journal Mathemat-
ical Mechanics, 18:705-762, 1969.

[10] B. Toy. Private Communication.

(11] E. F. Van de Velde. Ezperiments with Multicomputer
LU-Decomposition. Report CRPC-89-1, Center for
Research in Parallel Computing, 1989. To appear in
Concurrency: Practice and Experience.

(12] E. F. Van de Velde and J. L. Lorenz. Adaptive
Data Distributions for Concurrent Continuation. Re-
port CRPC-89-4, Center for Research in Parallel
Computing, 1989.

