Parallel Program Debugging with
On-the-fly Anomaly Detection

R. Hood
K. Kennedy
J. Mellor-Crummey

CRPC-TR90043
March, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

To appear in the proceedings of Supercomputing ’90

Parallel Program Debugging with
On-the-fly Anomaly Detection

Robert Hood

Ken Kennedy

John Mellor-Crummey

Department of Computer Science
Rice University
P. O. Box 1892, Houston, TX 77251-1892
({hood,ken, johnmc}@rice.edu)

Abstract

We describe an approach for parallel debugging that coordi-
nates static analysis with efficient on-the-fly access anomaly
detection. We are developing on-the-fly instrumentation
mechanisms for the structured synchronization primitives
of Parallel Computing Forum (PCF) Fortran, the emerging
standard for parallel Fortran. For programs without nested
parallelism, it is possible to bound the cost of detection
to a small constant at each shared access and thread cre-
ation point—in preliminary experiments this overhead is less
than 40%. Our instrumentation techniques guarantee that
we can isolate schedule-dependent behavior in a schedule-
independent fashion. The result is that a single instrumented
execution will either report sources of schedule-dependent be-
havior, or it will validate that all executions of the program
on the same data compute the same result. When an in-
strumented execution is being used solely to find sources of
schedule-dependent behavior, its cost can be reduced by slic-
ing out computations that do not contribute to race con-
ditions. Our approach to debugging is particularly well-
suited for inclusion in a parallel program development en-
vironment; we describe our ongoing efforts to incorporate it
in the ParaScope environment. '

1 Introduction

Parallel programs for shared-memory muitiprocessors can be
very hard to debug. In addition to the traditional logic bugs
of sequential code, parallel programs can exhibit schedule-
dependent bugs, which arise on some, but not all, execution
schedules. The principal cause of such errors is unsafe or
inadvertent communication through shared variables. If one
thread of execution changes a shared value concurrently with
another thread’s access to that value, the program’s behavior
may depend on the order in which the accesses to the value

" This work was supported in part by the National Science Founda-
tion under Grants CCR-8809615 and ASC-8518578, and by IBM Corpo-
ration through its research contracts with the Department of Computer
Science at Rice University.

are interleaved. These errors are often referred to as “data
races” or “access anomalies”.

Because the values computed during a program execution
and even the control flow path used in a particular thread
of control can depend on access interleavings, re-running the
program may not always produce the same results, making it
difficult for a programmer to isolate data races. To compound
the problem, inserting instrumentation in a program can per-
turb its execution schedule enough to make errors disappear.
Thus, the technique used to debug sequential programs —
re-executing the code with instrumentation to provide infor-
mation about program variable values — is ineffective for
finding data races in parallel program executions. In this pa-
per, we describe a technique that tackles these issues in the
context of debugging scientific programs written in a parallel
dialect of Fortran.

11 A Taxonbmy of Parallel Debugging
Techniques

A number of different strategies have been proposed for iso-
lating data race conditions in parallel programs. In order to
differentiate our technique from previous methods, we offer
the following taxonomy of approaches.!

Static methods. One approach for isolating data race con-
ditions in a parallel program is to use classical dependence
analysis techniques (1, 3, 4]. These techniques report depen-
dences for all potential race conditions that may occur during
parallel execution. Any program that does not exhibit a de-
pendence whose endpoints can be executed in either order
(because they are in concurrent threads) is guaranteed to be
free of race conditions at execution time.

In the general case, however, dependence testing is an un-
decidable problem [5]; therefore, dependence analysis systems
can only produce conservative approximations. That is they
may report dependences for data races that cannot actually
occur, but they will not fail to report a dependence: for a

1We do not include ad hoc schemes such as using naive extensions of
sequential debuggers to disect parallel program executions. Typically
these methods provide a fairly low level of abstraction and inserted
breakpoints affect the outcome of data races in the execution.

possible data race. Unfortunately, our experience with static
analysis tools has convinced us that the number of false posi-
tives is too high for programmers to rely exclusively on static
methods for isolating schedule-dependent bugs.

Post-mortem methods. This category includes all tech-
niques used to discover errors in an execution following its
termination. These techniques can be further classified into
those that require insertion of instrumentation code into a
program before execution and those that do not.

Intrusive. In this approach a program is instrumented to
produce a trace log during execution. After an execu-
tion completes, the log can be examined for evidence
of data races, or used reconstruct more detailed infor-
mation about the program’s behavior (11, 12]. Unfor-
tunately, collecting traces can affect the schedule taken
during execution. This can make some errors difficult or
impossible to pinpoint unless tracing is always enabled.

It may be impractical to trace all executions, however,

since sufficiently detailed traces of shared-memory par-
allel programs with fine-grain sharing can be enormous.

Unintrusive. In this approach a program is first executed
unmodified. If the user suspects a schedule-dependent
problem, the system assists in isolating the bug in a sub-
sequent phase. One method for doing this is to use re-
execution with “adversary schedules” derived from static
information [6]. Such schedules force a bug to appear by
employing schedules that are likely to give rise to the race
condition corresponding to a suspected dependence. The
disadvantage of this approach is that there may be an
exponential number of schedules that need to be tested.

Strategies in this category are particularly appealing to
those who must debug large-scale scientific programs be-
cause no overhead is incurred until a bug arises — the
program can be run at full speed for “production” com-
putations.

On-the-fly methods. These methods involve instrument-
ing programs with code to detect data races (usually called
“access anomalies” in this context) dynamically, in a manner
analogous to subscript checking in sequential code. A im-
portant advantage of on-the-fly techniques over trace-based
approaches is that they avoid the need for recording enor-
mous execution logs. On-the-fly techniques detect data races
by keeping track of the threads that access each shared data
location, and reporting an error if one thread of execution at-
tempts to write a location concurrently with another thread’s
access to that location [7, 8, 13, 16]. On-the-fly techniques
can detect all access anomalies that take place during a par-
ticular execution. In the general case, however, these tech-
niques can be quite expensive—Dinning and Schonberg re-
port on-the-fly monitoring overheads ranging from 150% to
over 1000% for a test suite of programs using their “task re-
cycling” technique (8].

1.2 Our Approach

Our approach to the access anomaly detection problem in-
volves coordinating both static analysis and on-the-fly tech-
niques. Without using static analysis, an on-the-fly technique
must assume that every access to each shared variable is po-
tentially anomalous and check it at run time. To reduce the
amount of run-time checking, we use static program anal-
ysis to prove that no anomalies can result from particular
accesses. A potential access anomaly or data race must cor-
respond to some carried data dependence in a parallel loop or
a dependence with its endpoints in code sections that can ex-
ecute concurrently. A very thorough analysis of dependence,
such as the one we employ in PFC [2] and ParaScope [4], can
significantly reduce the number of races that must be checked
at run time.

In addition to using static analysis to reduce the amount
of run-time checking, we have also devised a new technique
for on-the-fly anomaly detection that appears substantially
more efficient than existing approaches for a large class of
programs. With our technique, the cost at each instrumen-
tation point is bounded by a small constant for parallel For-
tran programs that use only a single level of parallelism (i.e.,
no nested parallel constructs) and use only the structured
synchronization constructs in PCF Fortran? in a disciplined
way; for programs with nested parallelism, the overhead at
instrumentation points increases to O(log V) when in parallel
regions nested NV levels deep. The efficiency of our on-the-fly
monitoring technique comes at the price of being unable to
handle programs that use unstructured synchronization.

To take full advantage of our techniques for anomaly de-
tection, we observe that with the proper treatment of asyn-
chronous coordination using locks or critical sections, on-
the-fly techniques can be used to detect sources of schedule-
dependent behavior in a schedule-independent manner. If
on-the-fly analysis of a single execution reports no poten-
tial anomalies for a given input data set, then no data races
exist for any program execution using that input data set.
This property enables use of on-the-fly techniques in a post-
mortem fashion to verify that a program’s results during a
production run with a particular input data set were not
schedule-dependent. If the results from a full-speed produc-
tion run appear questionable, the programmer can invoke a
debugger that mechanically generates and runs a version of
the program instrumented to detect and report data races on
the fly. During execution of the instrumented program, the
system is guaranteed to report any race conditions that could
have caused schedule-dependent behavior of the original pro-
gram.

When employing on-the-fly analysis in a post-mortem
phase, we can improve the efficiency of the instrumented pro-
gram by observing that the aim of the run is to report races,

3The Parallel Computer Forum (PCF) is a working group consist-
ing of representatives from academia, government and manufacturers of
parallel computing equipment. For the past year and a half it has been
working to standardize Fortran extensions for shared-memory parallel
computers(14, 15].

not to produce answers. We can use program slicing (18] to
eliminate any calculation or operation that cannot affect the
detection of data races in the program. For example, output
of final results falls into this category.

In the next section, we describe our on-the-fly anomaly
detection mechanism in detail and compare it to existing ap-
proaches. Section 3 describes our ongoing efforts to integrate
support for on-the-fly anomaly detection into the ParaScope
parallel programming environment and reports some prelim-
inary experimental results.

2 Detecting Parallel Access

Anomalies

The significance of access anomalies in parallel program ex-
ecutions was first recognized by Bernstein [5]. He described
a set of conditions, now known as Bernstein’s Conditions,
that a parallel program execution must satisfy to guarantee
deterministic behavior. Dinning and Schonberg (7] concisely
formulate these conditions in terms of READ and WRITE
sets. Each sequence of instructions in a parallel program has
an associated READ set and WRITE set. The READ set for
an instruction sequence contains all of the variables that are
read by statements in the sequence; similarly, the WRITE
set contains all variables that are written. A parallel access
anomaly exists in a program if any two potentially concur-
rent instruction sequences S; and S; do not meet the following
conditions:

READ(S) n WRITE(S;) = 0
WRITE(S:) N READ(S;) = 0
WRITE(S;) N WRITE(S;) = 0

In the presence of access anomalies, the behavior of a pro-
gram execution depends on the particular interleaving of in-
struction sequences. For this reason, the presence of access
anomalies is typically viewed as an error, and thus is of in-
terest for debugging.

To detect access anomalies while a program is execut-
ing, two types of information must be available: (a) which
variables are accessed by each instruction sequence, and (b)
which instruction sequences are potentially concurrent. Din-
ning and Schonberg describe two techniques for maintaining
this information during a program execution: task recycling,
and English-Hebrew labelling (8, 13]. While both techniques
are very general and are powerful enough to handle programs
with nested fork-join parallelism and unstructured pairwise
synchronization, this generality comes at a price. With task
recycling, it may cost as much as O(T') time per variable ac-
cess (where T is the maximum amount of concurrency ever
attained by the program) to maintain access history infor-
mation, and as much O(T') time at each thread synchroniza-
tion point to maintain concurrency information. Dinning and
Schonberg show how the cost to maintain variable access in-
formation can be reduced to O(1) while catching almost all
anomalies (7]; however, the cost of maintaining concurrency

information remains O(T') except for cases in which there is
no nested parallelism and no synchronization between paral-
lel threads. Similarly, English-Hebrew labelling has a poten-
tially high cost of O(NT) time per variable access, where N
is the maximum nesting depth of the parallel constructs, and
a cost of O(NT) time at each thread synchronization point.

To reduce the cost of on-the-fly methods, we sacrifice the
generality of the programming models handled by the task re-
cycling and English-Hebrew labelling techniques and instead
focus on programs with a single level of fork-join parallelism
that use only structured forms of synchronization, such as
synchronization based on ordered sequences. Most parallel
Fortran programs, especially those generated using automatic
parallelization techniques, exploit only a single level of paral-
lelism and typically employ regular synchronization patterns,
so we expect our techniques to apply to a large class of pro-
grams. Under the above restrictions, we have devised a tech-
nique that costs only O(1) time per variable access, and O(1)
time at each thread synchronization point.

In this section we describe our technique for maintaining
variable access histories and concurrency information during
a program execution. Like Dinning and Schonberg (8], our
technique assigns a tag during execution to each program
block, where a block refers to a dynamic execution of a se-
quence of instructions by a single thread. Internally, a block
contains no thread creation (fork), destruction (join), or syn-
chronization (SEND and WAIT) primitives, although a block
may begin with a WAIT, or a join operation, and end with
either a SEND or a fork operation. For each shared variable
access (either a read or a write), the tag of the block per-
forming the access is recorded in a list associated with the
variable. Also, the variable’s tags are checked to make sure
that the current access does not conflict with any previous or
pending accesses. These tests are performed by comparing
the variable’s tags with annotations that indicate which tag
values the current block may safely see; seeing any other tag
value indicates an access anomaly.

2.1 Maintaining Shared Variable Access
Lists

To detect access anomalies on the fly, it is necessary to main-
tain two lists for each shared variable: one of blocks that
have read it and one of blocks that have written it. The tags
in these lists are used to detect when a previous or pending
access to a variable by some block conflicts with an access by
the current block. To report all anomalies that occur during
an execution, complete lists of accesses to each variable would
need to be maintained during any interval in the execution
where parallelism is possible. Each time a block accesses a
variable, its access lists would need to be searched for tags

3SEND-VAIT synchronization was described in an early draft of the
PCF standard [14]. In the newest draft, this has been generalized into
POST-WAIT operations on ordered sequences [15]. A preliminary inves-
tigation leads us to believe that we can accommodate disciplined uses
of this more general construct with a similar approach.

prevread = fetch_and_store(Rv,curblock)
it LC(prevread) then Cv = prevread
if LC(Wv) then

report WRITE-READ access anomaly

Figure 1: Instrumentation for a Read of Shared Variable V

prevwrite = fetch_and_store(Wv,curblock)
it LC(prevwrite) then
report WRITE-WRITE access anomaly
it SP(Rv) then Cv = 0
elseif LC(Rv) or Cv != 0 then
report READ-WRITE access anomaly

Figure 2: Instrumentation for a Write of Shared Variable V

that indicate conflicting concurrent accesses. Unfortunately,
the cost of maintaining and searching complete lists of ac-
cesses for each variable is prohibitive.

Our technique for detecting access anomalies limits the ac-
cess history maintained for each shared variable V to the
last writer (Wv), the last reader (Rv), and a recent reader
for which a concurrent read was detected (Cv). The moti-
vation for limiting access histories is to reduce the overhead
for detecting anomalies during execution. While abbreviat-
ing access histories in this fashion reduces the completeness
of anomaly reports, for programs with no nested parallelism,
at least one anomaly report will be generated for each vari-
able for which an access anomaly occurs during execution.
For nested parallelism, additional information needs to be
recorded (see section 2.3.

Our preferred method for maintaining abbreviated access
histories for shared variables requires no locking and is wait-
free.4 We maintain access histories using widely available
atomic operations supported in hardware: fetch-and store,
read, and write.® Figure 1 shows the protocol used by read-
ers to update a variable’s access history and check for anoma-
lous accesses. The quantity curblock is the tag value for the
current block validating the variable access. The predicate
LC(x) is true if the block with tag x is logically concurrent
to the current block; x is logically concurrent with curblock
unless x = curblock, or program control flow ensures that
x sequentially precedes curblock. Figure 2 shows a simi-
lar protocol used by writers. The predicate SP(x) is true if
block x sequentially precedes curblock. The protocols shown
in figures 1 and 2 are respectively used to instrument each
read and write access that may cause an access anomaly for
a shared variable. In the following section, we show how tags
can be dynamically assigned to instances of blocks of code in
PCF Fortran programs in such a way that SP(x) and LC(x)
can be evaluated efficiently.

4An operation on a data structure is said to be wait-free if it is guar-
anteed to complete in a finite number of steps, independent of whatever
other operations may be in progress, or their relative speeds.

SFetchand.store is a register-to-memory swap, often known as
swap or xmenm.

A drawback of our wait-free instrumentation protocols is
that anomaly reports possible using these protocols vary in
precision, depending on the number and types of accesses that
occur. This difficulty can be avoided by using a variant of our
protocol in which a variable’s access history is locked while it
is being inspected and updated by the instrumentation pro-
tocols. However, locking protocols serialize the checking of
concurrent reads to a variable which can adversely affect pro-
gram performance. In the interest of making our instrumen-
tation as inexpensive as possible, we examine the properties
of our wait-free protocols.

Anomalies result from concurrent execution of both ends
of a data dependence. Three types of anomalies must be
considered: WRITE-WRITE anomalies (a pair of concurrent
writes to the same shared variable), WRITE-READ anomalies
(a read of a shared variable detects a concurrent write), and
READ-WRITE anomalies (a write to a shared variable detects
a concurrent read). A temporally overlapping read and write
to the same variable may be detected as both a WRITE-READ
and a READ-WRITE anomaly by the reader and writer, respec-
tively. For expository purposes, we refer to the access that
detected an anomaly as the sink of the anomaly, and the
other contributing access as the source. For a WRITE-WRITE
or a WRITE-READ anomaly, our wait-free protocol can iden-
tify the statement representing the sink of the anomaly and
the code block for the source of the anomaly. Static infor-
mation about the statements in the code block can be used
to report the set of statements that could have served as
the source of the anomaly. For a READ-WRITE anomaly, it
is usually possible to provide the same sort of report; how-
ever, in the presence of multiple concurrent reads there exists
a (low probability) pathological interleaving of the wait-free
protocols we use to update Rv and Cv that can cause loss
of information about the anomaly source. In this case our
wait-free protocol can report only the sink of the anomaly
(a write) and indicate the presence of multiple concurrent
reads. Use of a locking instrumentation protocol avoids this
difficulty since access history updates by concurrent reads
are serialized. An additional benefit of a locking protocol is
that it enables precise reporting of both the source and the
sink of an anomaly. With locking, additional information can
easily be maintained with each tag indicating the statements
that initiated the accesses; using a wait-free protocol, it it
much more difficult. If the lack of precision of an anomaly
report proves troublesome, the program can always be exe-
cuted again using a more costly locking protocol which can
provide more precise anomaly reports.

2.2 Assigning Tag Values to Blocks

During execution, our technique assigns a unique integer tag
to each dynamic code block. For the instrumentation over-
head per variable access to be acceptable, it must be easy to
test a pair of tags to see if they represent blocks that may
execute concurrently. Here we describe how we assign tags
to blocks in PCF Fortran program executions with a single

level of parallelism so that SP(x) and LC(x) can be evaluated
efficiently.

The dynamic structure of a parallel program execution
is naturally modeled as a partial order execution graph
where vertices represent instances of dynamic program blocks
and edges represent temporal ordering based on Lamport’s
happened-before relation [10]. Parallel Fortran programs are
constructed as a sequence of serial and parallel sections; se-
rial sections in the program correspond to articulation points
in the graph. Figure 3 shows a fragment of a PCF Fortran
program and its corresponding graph representation. Nodes
in the graph are aligned with the static fragments of code
that they represent. Access anomalies exist during a pro-
gram execution if two blocks access a variable and neither
block is an ancestor of the other in the program’s execution
graph. Conceptually, one method for evaluating the concur-
rency predicate SP(x) would be to maintain the graph rep-
resentation during a program’s execution and search for x as
an ancestor of the current block; however, using this scheme,
evaluation of the concurrency predicate would be costly and
would depend on the size of the execution graph.

Fortunately, it is possible to assign tags to blocks in an ex-
ecution of a PCF Fortran program that uses a single level of
parallelism so that SP(x) can be evaluated in constant time,
without using more than a constant amount of time to up-
date concurrency information at each block entry and exit.
The tag value dynamically assigned to each block in a pro-
gram execution using our technique corresponds to a node
numbering equivalent to a pre-order breadth first traversal
of the program’s execution graph.® Figure 3 shows such a
node numbering for a parallel loop example.” Given our pre-
scribed assignment of tags to blocks in the execution graph,
the tag value assigned to each serial section is strictly greater
than the tag value assigned to each of the blocks that pre-
cedes it in the execution. This simplifies evaluation of the
concurrency predicate SP(x) since information about which
tags correspond to ancestors preceding the current parallel
construct is summarized by the tag of the most recent serial
section. For parallel Fortran programs without nested paral-
lel constructs and SEND-WAIT synchronization, all blocks in a
parallel region are immediate descendants of a serial section.
Thus, for programs with no nested parallelism, SP(x) can be
evaluated with a single integer comparison between z against
the tag of the most recent serial section. The basic formula-
tion for LC(x) = (x # curblock) A —SP(x) (i.e., x is not the
current block and does not sequentially precede the current
block). Below we describe how tag assignments and concur-
rency relationships are computed for blocks on the fly for
PCF Fortran programs with no nested parallelism. Also, we
describe how to augment the definition of LC(x) to account
for block precedence induced by SEND-WAIT synchronization.

%In general, such a numbering of blocks is always possible on the fly
for PCF Fortran with no nested parallelism.

"The tag value of 47 for the initial node in the loop was chosen
arbitrarily.

PARALLEL DO Loops.

This construct defines a parallel loop in PCF Fortran. To
support testing for parallel access anomalies, each instance
of the loop body must be assigned a unique tag. The logical
parallelism of a parallel loop (i.e., the number of iterations)
can be determined symbolically before the loop begins exe-
cution as

1 4+ ((upper — lower) div stride)

where lower and upper are respectively the lower and upper
bounds of the loop index variable, and stride is the amount
the index variable is advanced after executing each instance
of the loop body. Iteration current of the loop is assigned
tag

loopbase + 1 + ((current — lower) div stride)

where loopbase is the highest unassigned tag value before
entering the loop. Without nested parallelism or synchro-
nization between interations of the loop body, the predicate
LC(x) can be evaluated as described earlier.

PARALLEL DO ORDERED Loops.

These loops are similar to PARALLEL DO loops, except that
loop iterations are guaranteed to be initiated in order, and
that SEND-WAIT synchronization can be used inside the loop
body to protect forward dependences between loop iterations.
Use of SEND and WAIT inside a parallel loop body logically sep-
arates the loop body into a sequence of blocks. For a loop in
which k SEND-WAIT synchronization variables are used, each
loop body instance dynamically partitions into 2k + 1 blocks.
For a PARALLEL DO ORDERED loop, the number of tags needed
is (# loop iterations) x (# blocks per iteration). Figure
3 shows a tag assignment for a DO ORDERED loop that uses
SEND-WAIT synchronization. The semantics of PCF Fortran
dictate that updates made to variables in a block ending with
a SEND on a synchronization variable s are visible in to the
blocks in subsequent iterations that begin with WAIT(s). In
terms of our abstract model, a block ending with SEND(s) is
an ancestor of the block in the subsequent iteration that be-
gins with WAIT(s). The regular structure of the relationship
between blocks enables us to compute in constant time the
values of the tags for all blocks in the parallel loop that are
visible. The nodes in the graph that correspond to blocks in
the parallel loop can be thought of as elements in a grid (see
the layout of the graph in figure 3). Knowing the row length
of the grid (the number of iterations in the loop) and the
tag value assigned to the first element, for any tag we can
compute its row and column index. Ancestor relationships
can be computed in constant time by comparing the row and
column indices for a pair of blocks. If the row and column in-
dices of one block are less than or equal to the corresponding
indices for the other block, then the first block is an ancestor
of the second. These tests can be evaluated in constant time.
To account for the block precedence constraints induced by
the SEND-WAIT synchronization, we augment LC(x) t6 check
if x is an ancestor of the current block using this “grid-based”

PARALLEL DO ORDERED I=1,4

WAIT(a)

SEND(a)
WAIT(b)

SEND(b)
—
END DO

Figure 3: A Fragment of PCF Fortran and its Execution Graph Representation

test. Two blocks in a DO ORDERED loop are logically concur-
rent only if they fail to satisfy this test.

In the newest draft of the PCF standard (15], SEND-WAIT
synchronization has been replaced with more general
POST-WAIT operations on ordered sequences. We are investi-
gating how similar techniques can be applied to handle the
common POST-WAIT synchronization idioms.

PARALLEL SECTIONS.

This PCF Fortran construct is used to obtain heterogeneous
parallelism. A unique tag is assigned to the body of each
SECTION as a fixed offset from the the first tag available when
the construct is.entered during execution. The PARALLEL
SECTIONS construct allows specification of an acyclic set of
constraints among the SECTIONs. Without nested parallelism
or ordering constraints between the SECTIONSs, the concur-
rency predicate LC(x) can be evaluated inside a SECTION
block in constant time as described earlier. To support con-
stant time evaluation of LC(x) when ordering constraints are
used, at compile time a lookup table can be computed to
enable tag comparisons between SECTIONs. For each pair of
offsets (x,y) from the base tag, the table indicates whether
SECTION x precedes SECTION y.® We incorporate the order-
ing constraints between SECTIONs into our instrumentation
protocol by having LC(x) inspect the appropriate boolean
table.

PARALLEL REGION.

The PCF Fortran PARALLEL REGION construct introduces
per-processor parallelism into a program. Code in a par-
allel region may be executed in parallel by each processor
available for the program execution. The amount of logical
parallelism that can appear in a parallel region is bounded
by P, the maximum number of processors available. Each
processor entering the region can compute its own tag for
the enclosed block by adding its virtual processor number to

81f table size becomes a concern, it is likely that a perfect hash func-
tion could be generated to enable use of a more compact table.

the value of the base tag of the region. Parallel loop and sec-
tion worksharing constructs may be nested inside a PARALLEL
REGION by augmenting LC(x) to return false if x is equal to
the processor local tag maintained for the enclosing parallel
region.

2.3 Extensions for Nested Parallelism

One of the key efficiencies of our technique for single level
parallelism is that determining whether a block z is logically
concurrent with the current block is often as simple as com-
paring against the tag of the enclosing serial section. When
nested parallelism is present, LC(x) is more costly to evalu-
ate. In particular, when executing in a block nested inside
N enclosing levels of parallelism, an ancestor block exists at
each of the IV levels. Keeping a stack of ancestors, one for
each nesting level, enables LC(x) to be evaluated correctly.
Since the tags are monotonically increasing from outer to
inner nesting levels, locating a tag on this stack to assert
-LC(x) can be accomplished using binary search at a cost of
O(log N). In addition, detecting anomalies in programs with
nested parallelism using our techniques requires that a sepa-
rate incarnation of Cv be present for each nesting level. This
is necessary to keep concurrent reads in inner parallel con-
structs from superceding concurrency information at outer
nesting levels.

Following termination of inner parallel constructs, ranges
of tags used by inner parallelism must be maintained since
these blocks are legal ancestors subsequent code in enclos-
ing blocks. For each individual parallel construct it is pos-
sible to pre-compute how many tags are needed before the
construct begins execution; thus, each construct can be allo-
cated a contiguous range of tags which can be summarized
by its endpoints. It is possible to limit the number of ranges
we must maintain to one per nesting level only for parallel
Fortran programs for which it is possible to pre-allocate tags
for an entire nested parallel construct at the outermost level.
It is not necessary to know the precise number of tags that
will be necessary inside a nested parallel construct; an upper

bound suffices. For example, a parallel triangular loop (outer
index variable I=1,M, inner index variable J=I,M), less than
M? tags will be needed for loop instances.

2.4 Non-deterministic Constructs

LOCKs and CRITICAL SECTIONs are two constructs in PCF
Fortran used to provide processes with atomic access to
shared data. Although these primitives insure that only
one process is granted access at a time, they do not con-
trol the order of access. These constructs are sources of
non-determinism since the values of shared data protected
by a LOCK or CRITICAL SECTION can depend on the order
in which processes are granted access. Bernstein’s Condi-
tions specify that it is unsafe for concurrent threads to access
the same variable if any of them changes its value. Just be-
cause a variable access is protected by a CRITICAL SECTION
does not mean that accessing it is safe with respect to Bern-
stein’s Conditions. Its value can still be a source of non-
determinism and thus should be reported as a data race that
can cause schedule-dependent behavior. Dinning and Schon-
berg (7] originally proposed treating operations on LOCK vari-
ables as asynchronous coordination operations. This not only
suppresses anomaly reports that would otherwise result from
accesses inside a critical section, but also has the undesirable
side-effect of masking some anomalies that occur outside the
protected region.

To help the user distinguish between intended and un-
intended forms of non-determinism, we propose a two-fold
approach. First, static analysis can often identify incon-
sistent use of ¢ritical sections—conflicting accesses (i.e., at
least one is a write) that are not all protected by a critical
section using the same lock variable. Second, we insert on-
the-fly instrumentation to monitor all potentially anomalous
accesses to shared variables, ignoring any “safety” provided
by critical sections. Although this approach will indicate
a number of anomalies, it will report all potential sources
of non-determinism in the execution. In an interactive set-
ting, anomalies arising from any particular statement can be
masked. This could be used to suppress reports for accesses
inside a critical section that the programmer deems “safe”.

3 Programming Environment Sup-
port for Parallel Debugging

In recent years it has become apparent that the development
of parallel programs is best accomplished in a programming
environment where the user and a sophisticated dependence
analysis system can cooperate to produce efficient, correctly
parallelized software from a sequential specification. A de-
bugger that uses the techniques outlined in this paper can
be used in such an environment to help validate the paral-
lelization process. Furthermore, the same information that
is needed to support parallelization will make it possible to
lower the anomaly detection costs.

As a test of our instrumentation methods, we are imple-

. menting them in the ParaScope programming environment,

which has been designed to assist in the formulation, imple-
mentation, and debugging of parallel Fortran programs. In
the remainder of this section we describe the status of that
undertaking. We begin with a description of the changes that
are required to build and execute instrumented programs.
Following that is a description of our experiences with a pro-
totype system. Finally, we discuss improvement techniques
that we will pursue in the future.

3.1 The Program Preparation and
Execution System

In order to incorporate the fast anomaly detection mechanism
into ParaScope, its compilation system must be able to build
efficient, instrumented programs. In addition, the debugging
system must manage the execution of the resulting program
and help interpret its results.

Compilation. To facilitate the construction of efficient in-
strumented code, the compiler must find all potential access
anomalies in the program. From this information, instrumen-
tation can be inserted by a simple source-to-source transfor-
mation.

A potential runtime access anomaly exists if compile-time
analysis reports a dependence whose endpoints can be exe-
cuted concurrently. In the case where anomaly detection is
performed by testing and updating access histories for each
shared location, we can instrument the memory access at each
end of the dependence to determine if a race condition exists
at runtime. This can be done by inserting a subroutine call
to the appropriate instrumentation protocol, passing it the
access history variable for the shared memory location being
checked. In addition, we perform bookkeeping required for
efficient concurrency testing by inserting two calls to initia!
ization routines—one outside of each parallel construct, and
one inside the construct at the beginning of the parallel block
of code.

If a dependence inside a parallel region has an endpoint
at a call site, we must instrument all potentially anomalous
accesses that may occur from within the routine invoked at
the call. To perform such instrumentation, we must, in effect,
propagate instrumentation information to all of the subpro-
gram’s descendents in the call graph. Solution of this in-
terprocedural dataflow problem will yield a collection of all
accesses that must be instrumented in the program. To ac-
commodate this task, we have developed an instrumentation
algorithm that uses interprocedural analysis techniques de-
veloped for the ParaScope programming environment [6] to
quickly identify and instrument every subprogram that may
have an anomalous access, without rereading the entire pro-
gram text. This algorithm will be the subject of a future
paper. N

Execution. The instrumentation techniques outlined in
section 2 allow us to provide two kinds of debugging assis-
tance to a programmer. While a program is under develop-
ment, it is possible to use the on-the-fly anomaly detection
scheme full time. This will help isolate schedule dependent
behavior during the period of parallelization. In addition to
the safety net provided during development of a parallel pro-
gram, using a post-mortem scheme we can also provide some
debugging support for production codes as well. If schedule-
dependent behavior is observed during a production run, an
execution of the instrumented program on the same data will
be guaranteed to find schedule-dependent behavior as long
as the control flow of the program is independent of values
computed inside of unordered critical sections. Finding a bug
in a production code might proceed as follows:

o While executing a program, the user suspects that its
behavior is schedule-dependent. At that point he invokes
the debugger.

o In response to that request the debugger performs the
following actions:

— An annotated program is constructed as described
in the previous section.

— The instrumented program is recompiled.

— The instrumented program is re-executed on the
same input data, with all detected anomalies col-
lected in a summary report.

— If desired, each anomaly can be treated as a break-
point. This would enable the user to investigate
the program state at the anomaly, before having
execution proceed to the next one.

¢ The anomaly report collected during the instrumented
run can be viewed within ParaScope’s dependence-based
source editor. The run-time detection of an anomaly
proves the existence of a dependence reported by static
analysis. Thus, the same mechanism in the source editor
that is used for viewing dependences can be used for
displaying access anomalies.

3.2 Experimental Results

In order to test the efficiency of our anomaly detection mech-
anisms, to date we have performed experiments on two paral-
lel programs using a Sequent Symmetry. The first program,
search, is a multi-directional search program that uses a di-
rect search method for finding a local minimizer of an uncon-
strained minimization problem [17). The other, finite, is the
finite element code that was tested by Dinning and Schon-
berg [8].

We used a semi-automatic prototype system to insert the
instrumentation code. The system automatically inserts dec-
larations for auxiliary storage to store the run-time access
history information for any variable that dependence analy-
sis indicates might be involved in a parallel access anomaly.

call InitPDO(1, n, 1)
c$ doacross local(j),
cs$e share(n, index, f, dim, S, S_tag, f_tag)
do 13000 i =1, n
call EnterPDO(i)
do 12000 j = 1, n
call WriteCheck(S_tag(index(i), j))
call ReadCheck (S_tag(index(0), j))
S(index(i),j) = 1.5d0 * S(index(0),j) -
* 0.6d0 * S(index(i),j)
12000 continue
call WriteCheck(f_tag(index(i)))
f£(index(i)) = value(index(i), n, dim, S, S_tag)
13000 continue

Figure 4: An instrumented parallel loop from the computa-
tional kernel of search.

For each such variable, it allocites 16-bytes of tag storage.?
At any point in the program where a potentially anomalous
access to a variable may occur, the system inserts code to
update the variable’s tag information and check for access
anomalies. If a dependence endpoint was a call site within
a parallel loop, we propagated the instrumentation into the
body of called subprogram manually. When our implemen-
tation is complete, this will be handled automatically.

For example, in search the parallel loops that make up the
computational kernel of the program manipulate S, a two-
dimensional array of double precision values that contains
vertices in a simplex, and compute a vector £ of double pre-
cision function values. A representative parallel loop and its
associated instrumentation is shown in figure 4. The call to
InitPDO allocates a unique tag for each instance of the paral-
lel loop body. The call to EnterPD0O computes the tag used for
a loop body instance. Calls to ReadCheck and WriteCheck
use the protocols described in figures 1 and 2 to check for
access anomalies. Because of the use of an index array, static
analysis was incapable of determining conclusively that no
anomalies existed in this loop and instrumentation was thus
required. The function value has a sequential loop that ref-
erences values in S. Since values in S are also written inside
the parallel region, accesses to S by function value must be
also be instrumented. This was done by passing S_tag into
value and inserting ReadCheck calls in the sequential loop of
value at the points where it accessed S.

Results for search.

Figure 5 shows the performance of several versions of search
on a variety of problem sizes. The solid line shows the perfor-
mance of the uninstrumented sequential version of the pro-
gram (created by directing the compiler to ignore the signif-

9Only 12 bytes are necessary to implement our concurrent protocol
(a 32-bit quantity for quantity for Wy, Rv, and Cv), but we trade space
for time and since indexing of tag variable arrays is faster if the the size
of tag information is a power of 2. If a locking protocol for tag update
and comparison is used, one may optionally use additional storage to
record an indication of what statement initiated the variable reference
to enable the anomaly source to be pinpointed.

8000 -{ ~---- parallel, instrument

oo sequnniiq.l, uninstrunéented
e)
, uninstrumented

& .o -s-a paralle

6000 —
Elapsed

Time
(sec) 4000

2000

0 -

Problem Size
Figure 5: Performance of search.

icant comments for parallelization). The dotted line shows
the performance of a 10-processor parallel execution of the
uninstrumented parallel program. The dashed line shows the
performance of a 10-processor parallel execution of the in-
strumented version of the parallel program. For the prob-
lem sizes we tested, the speedup continues increasing as the
problem size is enlarged. We observed the largest speedup
of 3.73 for the 10-processor execution of the uninstrumented
parallel program on problem size 40. For the problem sizes
we tested, the lowest execution overhead observed for our
wait-free anomaly detection instrumentation was 22% for a
problem size of 2, and the highest was 32% for a problem
size of 4. Overheads on other problem sizes ranged between
25-30%. In trials using a locking instrumentation protocol
overhead was roughly 50%.

Results for finite.

In judging the performance of finite, we ran the program
on one problem instance!® and made two timing measure-
ments: the overall time required by the computation, and the
time spent in parallel execution. After uncovering an inconse-
quential access anomaly resulting from declaring a variable as
shared rather than local, we observed instrumentation over-
heads averaging 37% of total execution time. The instrumen-
tation overhead for the parallel loops alone were measured at
48%. When a locking protocol was employed, the penalties
increased to 56% and 61%, respectively. In contrast, Dinning
and Schonberg reported a 1030% overhead using their task
recycling technique on finite. It should be pointed out that
they instrumented all shared memory accesses. Our system
was able to eliminate many of those instrumentation points
using dependence analysis. Recall however that the relative
efficency of our approach is achieved at the expense of gener-
ality. Our method could not handle programs with pairwise
coordination (e.g., SEND-RECV) whereas Dinning and Schon-
berg’s task-recycling technique could.

10The version of the program we obtained from Anne Dinning contains
its own test data.

3.3 Reducing the Cost of Post-Mortem
Debugging

When the debugging system is being used to perform a post-
mortem analysis, there are two steps of the process where sub-
stantial efficiency improvements can be made—recompilation
and re-execution. If the program is so large that recompila-
tion of the instrumented version would be too expensive, we
could avoid it by patching the executable with the anomaly
detection code. In order to get the locations of the memory
references that must be instrumented, the compiler could pro-
duce that information while translating the uninstrumented
version of the executable.

If the primary objective of re-execution with anomaly de-
tection is the creation of an anomaly report, we can further
improve running time for re-execution by eliminating compu-
tations that cannot affect the anomaly report. For example,
final output of results could be avoided. Because ParaScope
constructs fairly precise dependence graphs, we can use pro-
gram slicing to eliminate unnecessary computations {18, 9].
By slicing with respect to the anomaly report, we can produce
a program that produces the same anomaly report but runs
significantly faster and requires less space. In many cases, the
result would be a “shell” of the previous program, containing
only the instrumentation code and the statements necessary
to duplicate the control flow of the original.

If the program is large, we can slice-the the executable,
avoiding recompilation by inserting branches around unnec-
essary code. This strategy would require that the compiler
construct in advance a table of the locations and targets of
the branch instructions.

4 .Conclusions and Future Work

The goal of the techniques explored in this paper was to re-
duce the overhead of on-the-fly schemes for anomaly detec-
tion. To this end we have described a approach for parallel
debugging that coordinates static analysis and an on-the-fly
access anomaly detection mechanism. Our instrumentation
system exploits dependence information to reduce the num-
ber of instrumentation points necessary. It is independent of
the method used to detect access anomalies and could be used
with other on-the-fly anomaly detection schemes such as Din-
ning and Schonberg’s task recycling or Nudler and Rudolph’s
English-Hebrew labelling.

Furthermore, by limiting the scope of our efforts to PCF
Fortran programs that use common idioms of the PCF syn-
chronization constructs, we are able to make individual calls
to instrumentation routines inexpensive. In particular, for
many programs without nested thread-creation operations, it
is possible to bound the cost of detection to a small constant
at each access and thread creation point. Preliminary exper-
iments demonstrate an instrumentation overhead of about
40%. Although the PCF draft standard is being revised, we
are confident that our techniques will accommodate a disci-
plined subset. We are currently exploring extentions to our

techniques to support general POST-WAIT synchronization on
ordered sequences.

Our approach to debugging is particularly well-suited for
inclusion in a parallel program development environment. We
have described work in progress towards incorporating it in
the ParaScope environment. The moderate overhead of our
technique may make it acceptable for continuous use in dur-
ing program development and testing. It is possible to use our
techniques in a post-mortem fashion as well. For programs
without intended non-determinism, if a production run in-
dicates the possibility of schedule-dependent behavior, our
techniques guarantee isolation of the cause of such behav-
jor. Using dependence information, it is possible to reduce
the cost of a re-execution to uncover anomalies by slicing out
computations that do not contribute to race conditions in the
program.

Acknowledgements

The authors thank Ben Chase for participating in many of
the early discussions of this work, and Jaspal Subhlok for his
insights regarding critical sections. The experimental work
could have not been performed without the broad-based soft-
ware support provideed by thé PFC and ParaScope groups at
Rice. We also thank Anne Dinning for providing the code for
finite.

References

(1] R. Allen, D. Baumgartner, K. Kennedy, and A. Porter-
field. PTOOL: A semi-automatic parallel programming
assistant. In Proc. of the 1986 International Conference
on Parallel Processing, pages 164-170, Aug. 1986.

[2] R. Allen and K. Kennedy. Automatic transla-
tion of FORTRAN programs to vector form. ACM
Transactions on Programming Languages and Systems,
9(4):491-542, Oct. 1987.

[3] W. F. Appelbe and C. E. McDowell. Anomaly reporting
- a tool for debugging and developing paralle] numerical
applications. In Proc. First International Conference on
Supercomputers, FL, Dec. 1985.

[4] V. Balasundaram, K. Kennedy, U. Kremer, K. McKin-
ley, and J. Sublok. The ParaScope editor: An interactive
parallel programming tool. In Proc. Supercomputing '89,
pages 540-550, Reno, NV, Nov. 1989.

[5] A. J. Bernstein. Program analysis for parallel pro-
cessing. Transactions on Electronic Computers, EC-
15(5):757-762, Oct. 1966.

(6] D. Callahan, K. Cooper, R. Hood, K. Kennedy, and
L. Torczon. Parascope: A parallel programming envi-
ronment. International Journal of Supercomputer Ap-
plications, 2(4):84-99, 1988.

(7] A.Dinning and E. Schonberg. An evaluation of monitor-
ing algorithms for access anomaly detection. Ultracom-
puter Note 163, Courant Institute, New York University,
July 1989.

(8] A. Dinning and E. Schonberg. An empirical comparison
of monitoring algorithms for access anomaly detection.
In Second ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming (PPOPP), pages 1-10,
Mar. 1990.

[9] S. Horwitz, J. Prins, and T. Reps. Integrating non-
interfering versions of programs. In Conference Record of
the 15th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 133-145, San Diego, CA,
Jan. 1988.

[10] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-565, July 1978.

[11] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with Instant Replay. IEEE Transac-
tions on Computers, C-36(4):471-482, Apr. 1987.

(12] B. P. Miller and J. D. Choi. A mechanism for efficient
debugging of parallel programs. Technical Report 754,

Department of Computer Science, University of Wiscon-
sin at Madison, Feb. 1988.

[13] . Nudler and L. Rudolph. Tools for efficient develop-
ment of efficient parallel programs. In First Israeli Con-
ference on Computer Systems Engineering, 1988. Cited
in [8].

(14] Parallel Computing Forum. PCF Fortran, Oct. 1989.
Working Draft.

(15] Parallel Computing Forum. PCF Fortran, Mar. 1990.
Working Draft.

[16] E. Schonberg. On-the-fly detection of access anomalies.
In Proc. ACM SIGPLAN ‘89 Conference on Program-
ming Language Design and Implementation, pages 285~
297, June 1989.

(17] V. J. Torczon. Multi-directional search: A direct
search algorithm for parallel machines. Technical Report
TR90-7, Department of Mathematical Sciences, Rice
University, May 1989.

(18] M. Weiser. Programslicing. IEEE Transactions on Soft-
ware Engineering, SE-10(4):352-357, July 1984.

