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Abstract

In applications such as finite element analysis and computer graphics, the ability
to pack space with a conformal mesh of elements of similar shape but different size is
useful. This paper describes a technique for adaptively packing space with a conformal
mesh of tetrahedra of bounded aspect ratio.

The method consists of three primary steps, each of which relies on a new observa-
tion or algorithm.

o Adaptively subdivide space using an octree of tetrahedral components.
We show that such an octree is possible thanks to the existence of a provably
unique symmetric tetrahedron that can be recursively subdivided into eight sim-
ilar tetrahedra.

e Maintain balance in the octree.

A balanced octree is one in which the edge lengths of neighboring elements differ
by at most a factor of two. We give two new algorithms for maintaining balance
during adaptive subdivision.

e Produce a conformal tetrahedral octree from a balanced tetrahedral octree.

We give a simple algorithm that constructs a conformal octree with tetrahedra
of only a few different shapes and avoids the introduction of extra vertices in the
interior of elements of the balanced octree.

Each of these components may be generalized to produce conformal simplicial par-
titions of arbitrary dimension.
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1 Introduction

An essential component of many geometric algorithms is the construction of a partition
of space. In such applications as finite element analysis, solid modeling, computer-aided
geometric design and graphical rendering, among others, important problems can be solved
efficiently by decomposing the geometric domain into polyhedral elements, solving a problem
over each element of the decomposition, and unifying the separate solutions into an exact
or approximate solution to the larger problem. Among the well-known space partitions
are triangulations, quadtrees [Sam90], k-D trees [Ben75] and binary space partition trees
[FKN8O].

Several properties are desirable in a partition of space, including adaptivity, which allows
elements to differ considerably in size, conformality, which requires that the intersection of
two elements be a proper face of each, and quasi-regularity, which ensures that the elements
do not degenerate into flat or distorted shapes. All the hierarchical space partitions named
above are fully adaptive, but not conformal. When conformality is necessary, elements
from these partitions can be triangulated in a post-processing step to achieve it. Only
triangulations can be both conformal and completely adaptive. Unless precautions are taken,
however, an adaptive triangulation can be highly irregular.

In this paper, we present new techniques that produce an adaptive, conformal packing of
space with well-shaped elements. An instance of the problem consists of an initial, possibly
trivial, partition of a region of space and an error predicate e(S) that is true exactly when
the tetrahedron S is éufﬁciently small. The solution is a conformal packing of space with
tetrahedra each of which satisfy the error predicate. The construction of this packing consists
of three major steps.

First, we construct a tetrahedral region octree, like the more familiar cubical region octree
in many ways, but composed of similar tetrahedra instead of cubes. The existence and
uniqueness of the tetrahedron that allows this hierarchical decomposition of space is proven
in an appendix. The tetrahedra are subdivided sufficiently to ensure that each satisfies the
error predicate.

Additional tetrahedra are decomposed, either during or after the construction of the



tetrahedral octree, to produce a balanced tetrahedral octree. In this balanced octree, tetra-
hedra that share a vertex have edges that differ in length by at most a factor of two. The
competing approaches of maintaining balance throughout the decomposition or restoring
balance after the subdivision lead to two new techniques, each with its own advantages.

Finally, we construct from a balanced tetrahedral octree a conformal octree. Unlike some
techniques, this vertez marking method does not require the placement of new vertices within
the interiors of elements. The only additional vertices required are at the midpoints of edges
of elements present in the balanced octree. Each of the tetrahedra present in the conformal
partition is similar to one of five dissimilar tetrahedra, none of which is particularly badly
shaped.

Each of these steps, although described as a process in three-dimensional space, is in-
dependent of dimension. In section 3, we show that the decomposition of a tetrahedron
into eight similar tetrahedra generalizes into the decomposition of a particular simplex of
n dimensions into 2" similar simplices. The decomposition of the n-cube into smaller n-
cubes is the basis for a hierarchical subdivision of n-space called an n-dimensional cubical
region quadtree [Sam90]. Similarly, the decomposition of the n-simplex is the basis for the
n-dimensional simplicial region quadtree, which represents a hierarchical subdivision of n-
space into simplices. Other techniques are described in their general n-dimensional form
as well. The generality of these techniques is important, because time-varying problems in
physics and engineering can often be expressed as problems in four dimensions, and problems
in data analysis and visualization are often of high dimension.

Much of the work oﬁ mesh generation for finite element analysis has considered the space-
packing problem with the constraint that the elements must include certain predetermined
vertices or edges or lie on certain faces. In a sequel to this paper [MW90], we describe how

a packing of space can be adjusted to satisfy these sorts of constraints.

2 Related Work

The question of which shapes fill space is a classical one, with proofs and conjectures dating

back over 2000 years. Senechal [Sen81] reviews the history of attempts to fill space with



tetrahedra. Field [Fie86)] describes a recent method for filling space with tetrahedra, based
upon an approximate packing of space with icosahedra. The book by Coxeter [Cox73] is a
source of much information on the more general problem of filling higher dimensional spaces
with polytopes.

Several of the standard approaches to mesh generation are based upon the construction
of a (cubical) quadtree [YS84] and recent work has shown that that general approach can
lead to provably good meshes [BEG90]. In particular, balanced quadtrees have been used to
construct partitions of parameter space for use in parametric surface rendering [HB87).

Other automatic mesh generators rely upon Delaunay triangulations of carefully con-
structed point sets to produce well-shaped elements [Ban90, Joe84]. The specific problem of
triangulating polygons has also received considerable attention, with attention paid to the
shape of the triangles [BGR88, Smi88] and to the efficiency of the calculation [TW88]. Other
mesh generators based on iterative triangulation methods include those reported in [Riv87,

FF85, CFF85).

3 Recursive decomposition of n-simplices

For generating a uniform partition that fills a region of R", many shapes are possible; the
study of plane tilings provides many fascinating examples and open problems. For iteratively
generating an adaptive partition of space, however, the elements of the partition at each step
must be amenable to subdivision. A hexa.gonai tiling of the plane, for example, cannot be
easily refined because a hexagon cannot be divided into a number of similar hexagons. The
subdivision of a square into four smaller squares is the basis for the familiar quadtree data
structure [Sam90], and the generalization of the square to n dimensions, called the n-cube,
is the basis for hierarchical decomposition called the n-dimensional cubical region quadtree.

Less obvious, but quite as important, is the fact that in each dimension there exists
a simplex that can be subdivided into 2" similar simplices. This is well known in two
dimensions, where a simplex is a triangle and three segments, each connecting a pair of edge
midpoints, divide any triangle into four smaller similar triangles. In higher dimensions, only

carefully chosen simplices have this property.



One particular kind of recursively decomposable simplex, which has been appreciated
more for its combinatorial structure than for its geometry, is the n-dimensional quadrirect-
angular simplez [Cox73], or Q-simplex for short. In standard position, the Q-simplex £" is

the convex hull of the points

Vo (0 0 0... 0)

Vi (1 00... 0)
V, (1 1 0... 0
(11 1... 0)

Vi

Vo 11 1... 1)
In [DM82], the combinatorial structure of £™ is described in detail, and we refer to several

of these results below.

One of the important properties of the Q-simplex is that n! Q-simplices in n dimensions
can be joined to form an n-cube. This may be seen by considering the number of paths of
length n along edges of an n-cube that start at V5 and end at V,. Each such path defines a
Q-simplex, there are n! such paths, and t.he union of the Q-simplices forms the n-cube. This
triangulation of the unit n-cube is called Kuhn’s triangulation in [DM82]. Figure 1 illustrates
Kuhn'’s triangulation of a cube.

The property of greatest interest here, however, is expressed in the following theorem.

Theorem 1 An n-dimensional Q-simplez can be divided into 2" identical Q-simplices, each

of which has its longest edge parallel to the. longest edge of the original.

Proof: [DM82] shows that if Kuhn’s triangulation is applied to an n-cube and copies of
that cube are translated to form a conformal packing of space, then the resulting partition
is a triangulation. Consider a packing of 2" such translationally equivalent n-cubes around
a point. The large cube containing the point has a Kuhn'’s triangulation, and the measure of
each Q-simplex of this larger triangulation is exactly 2" times the measure of the smaller Q-
simplices. We claim that one large Q-simplex exactly contains 2" of the smaller Q-simplices.

Let [0,1]" be the large n-cube and consider the Q-simplex £" within it. The volume of
T" is defined by the inequalities z; > z;,;(1 < ¢ < n). Associate with each of the vertices V;

of " the subcube C; that contains V;. That is, C; = [0.5,1) x [0,0.5]*~7. Thus, subcube
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FIGURE 1: Kuhn's triangulation of a cube

Cj is bounded by the inequalities z; > 0.5 (0 < ¢ < j) and z; < 0.5 (j < ¢ < n). Over C},
the set bounded by the inequalities z; > z;41 (0 < i < j) and z; > zip1(j < i < n) lies
entirely within I", since z; > z;4; for all points in C;.

These two sets of inequalities define a simploid over C;. A simploid is the product of two
Q-simplices. After translation and scaling to make C; coincide with the unit cube, the sim-
ploid defined by these inequalities is denoted £*~7. [DM82] shows that a subset of Kuhn’s
triangulation of [0, 1]" triangulates £%"=7. Therefore, a subset of Kuhn’s triangulation of
C; is a triangulation of C; N ™. The union of the triangulations of the simploids forms
a triangulation for £". Moreover, because all the Kuhn’s triangulations are for identically
oriented cubes, all the longest edges of all the subsimplices are aligned. O.

Figure 2 illustrates the three dimensional case.

The Q-simplex is not the only recursively decomposable simplex, nor is it the one of best
shape. Several measures of the shape of a simplex have appeared; the aspect ratio as defined
in [Fie86] seems most .tural. The aspect ratio of a simplex is the ratio of the radius of an
inscribed ball to the radius of a circumscribing ball, times the dimension. The aspect ratio
of a regular simplex is one in all dimensions, and falls toward zero as the simplex becomes

less regular.



FIGURE 2: Simple symmetric subdivision of a Q-tetrahedron

The aspect ratio of a Q-simplex in n dimensions is given by

V2n
n—1+v2

and, in particular, the aspect ratio of a Q-tetrahedron is near 0.7174. However, because the
longest edges of the subsimplices in a symmetric subdivision are parallel, a simple linear
transformation can improve the aspect ratios of all the subsimplices, while maintaining their
similarity to the original simplex. A scaling in the direction parallel to the longest edges

preserves similarity, and a scaling by the optimal factor of 1/v/n + 1 produces simplices with

aspect ratios

\/ 6n
(n+1)(n+2)

We call a simplex produced by this scaling rhombic, because of the close geometric relation-
ship between the optimally scaled tetrahedron and the rhombic dodecahedron. The aspect
ratio of a rhombic tetrahedron is near 0.949.

The one-dimensional family of simplices that arise from stretching Q-simplices in the
appropriate direction includes all the recursively decomposable tetrahedra that arise from
corner-chopping; that is, each vertex of the parent tetrahedron is a vertex of exactly one

subtetrahedron. In this family, each subsimplex is similar to its parent simplex, or to a



FIGURE 3: An optimally distorted Q-tetrahedron

reflection of the parent. The rhombic tetrahedron is the only recursively decomposable
tetrahedron with the corner-chopping property for which the subtetrahedra are similar to
the parent, without the need for reflection. It is also the tetrahedron of best aspect ratio in
this family. These results are proved, and the formulas above are derived, in the Appendix.

The possibility of filling space with rhombic tetrahedra has been noted [Cox73], but has
not appeared in the literature as a computational technique. Some methods for packing
space [Fie86] create some elements with better aspect ratios than rhombic tetrahedra have
and some elements with worse ratios. We know of no uniformly dense packing that has
better aspect ratios for all its elements. Moreover, since the elements of the packing are
recursively decomposable, they can form the basis for a tetrahedral octree that has many of
the advantages of the familiar cubical octree, including adaptivity, and all of the advantages
inherent in a tetrahedral partition, such as the existence of unique linear interpolants over
elements. This construction generalizes easily to permit the creation of simplicial region
quadtrees in n dimensions. We conjecture that the methods described above lead to the

simplicial quadtrees with best element aspect ratios in all dimensions.



4 Maintaining and restoring balance in quadtrees

For a solid that is uniformly complex throughout its volume, a uniform quadtree provides
an adequate approximation to the solid. However, many objects designed in practice have
large regions of low complexity, where large elements provide an adequate approximation
to the solid, and scattered areas of high complexity where small elements are needed. A
general quadtree divides R into similarly shaped elements of possibly different sizes. This is
essential for the solution of finite element problems on large solids, where a sufficiently fine
uniform quadtree could overwhelm the available computational resources and a too coarse
uniform quadtree would provide insufficient accuracy.

The construction of a quadtree that adaptively approximates a solid requires an initial
quadtree, possibly consisting of one element that contains the entire region of interest, and
an error predicate that is true for an element exactly when the element is sufficiently small
to accurately approximate the solid over its volume. The basic algorithm to construct the
quadtree recursively subdivides any element that fails to satisfy the error predicate until all
elements satisfy it. The quadtree that results can have very highly refined elements adjacent
to coarsely refined elements.

A balanced quadtree is a quadtree in which corresponding edges of adjacent elements differ
in length by at most a factor of two. This restriction prevents abrupt changes in element size.
Balanced quadtrees have also been called restricted quadtrees [HB87]. Balanced simplicial
quadtrees are particularly interesting because, as shown in section 5, they can easily be
transformed into conformﬂ simplicial Al.)a.rtitions that have elements with good aspect ratios.

Either of two distinct modifications of the basic quadtree refinement algorithm produce
balanced quadtrees. 1n the lazy-splitting algorithm, each refinement phase begins with a
balanced quadtree and subdivides only those elements that fail the error predicate, without
regard to balance. Then, additional elements are split in a rebalancing step to restore
balance to the quadtree, and the cycle is repeated until the quadtree is sufficiently refined.
This Rebalancing method generates a minimum balanced quadtree. It produces the same
quadtree that results when the entire quadtree is constructed without regard for balance

and then the minimum number of elements are split to restore balance.



The biggest apparent drawback to the Rebalancing method is that, in one rebalancing
phase, splitting an element to restore balance may cause a chain reaction in which a sequence
of other elements must also split. For example, in figure 4, the unit interval has been
hierarchically subdivided at 1/2,1/4,...,27%, so that the corresponding one-dimensional
quadtree is balanced. If the next level of refinement splits the interval [27%, 2! -], a sequence
of k — 1 additional subdivisions is required to rebalance the quadtree. Fortunately, the set
of all such chain reactions can be determined at once, efficiently, using a variant of breadth
first search.

Let T denote a balanced quadtree whose elements have a maximum depth k, where
an element of depth k is one that results from k refinements of an element in the original
quadtree. Let C consist of those elements of T that fail to satisfy the error predicate; these
elements are necessarily at depth k because elements at lesser depth that fail the error test
would have been split at a previous iteration. The algorithm of figure 5 refines the balanced
quadtree T, preserving balance and subdividing all elements of C. Figure 6 depicts the
process of applying this method to a few elements in a balanced square quadtree.

The following theorem demonstrates the local optimality of the method.

Theorem 2 Let T denote a balanced quadtree whose elements have a mazimum depth k. Let
C consist of those elements of T that fail the error predicate. The procedure RebalancingSplit
replaces T by a quadtree T' which is the smallest balanced quadiree that is a refinement of T

and has all elements in C subdivided.

Proof: From the construction, it is clear that 7" is contained in the original quadtree

Balanced subdivision

P4 Aninterval splits

More intervals split
/ to maintain balance

£ salanced subdivision

FIGURE 4: Rebalancing can require unbounded splitting of elements
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RebalancingSplit(T: Quadtree, SplitSet: ElementSet, k: integer:)

/* T is a balanced quadtree of depth k */

/* SplitSet is the set of elements at depth k that fail the error predicate */
/* SplitNexzt is a set of elements that must split for balance */

for j = k downto 1
SplitNext = 0
for each element E € SplitSet
T =T - EU Subdivide(E)
for each element F' € T that shares a vertex with £
ifdepthof F=j;—-1
/* F must be split to maintain balance */
SplitNezxt = SplitNextU F
SplitSet = SplitNext

FIGURE 5: The Rebalancing method for balanced quadtrees

HH
HEH

Elements subdivided in the next step

FIGURE 6: Rebalancing a quadtree after one level of adaptive subdivision
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T and contains all elements that result from the subdivision of elements in C. To show
that T” is balanced, assume . positely that for two vertex-adjacent elements £ and F in T,
depth(F') > depth(E) + 1. Since T is balanced, F' and E cannot both be in T; evidently,
the parent of F' was subdivided, and was vertex-adjacent to E. No other explanation is
possible since no element is subdivided more than once in a single rebalancing phase. This
behavior is inconsistent with the algorithm, however, because the subdivision of the parent
of F causes E to subdivide when depth(F) = depth(E) + 1. By contradiction, then, T must
be balanced.

Moreover, T" is the smallest quadtree with this property. Any element of depth j that
appears in T’, but not T, must be vertex-connected to the child of an element of C by a
chain of k — j + 1 elements, whose depths increase sequentially. Thus, the parent of this
element had to split to maintain balan:= in the quadtree. O.

The alternative, eager-splitting algorithm avoids the cascading sequences of element splits
that may occur in the Rebalancing method. This Buffer method maintains two sets of
elements at the most refined level of the quadtree, a core of elements that subdivide to
achieve greater accuracy, and, surrounding the core, a buffer of elements that subdivide
only to maintain continuity. The buffer elements prevent sudden transitions in the size of
elements in the quadtree. The Buffer method builds the balanced quadtree one level at a
time. The method takes as input two sets of elements at level k, the level k core elements,
all of which fail the error predicate, and the level k buffer elements, which satisfy the error
predica =. The algorithm of Figure 7 splits all of the core elements, and some of the buffer
elements when necessary to preserve balance.

Figure 8 shows an example of the method in action. In each frame, the shaded elements
fail the error predicate. Those elements and their neighbors split, while the remaining
elements remain intact and may be ignored at deeper levels. Note that unshaded elements
are only subdivided to maintain continuity when neighboring shaded elements subdivide.

The unshaded elements are already known to provide sufficiently accurate approximations.

Theorem 3 Call the error predicate e hereditary if e(S) = e(E) for any child E of S. If

the error predicate is hereditary, then the Buffer method produces a balanced quadtree.
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BufferedSplit(T: Quadtree, C, B: ElementSet)

/* T is a balanced quadtree of depth k¥ */

/* C is the set of elements at depth k that fail the error predicate */

/* B is the set of elements at depth k that satisfy the error predicate */

for each element E € C
T =T — E U Subdivide(E)

for each element £ € B that shares a vertex with an element of C

T =T — E U Subdivide(E)

FIGURE 7: The Buffer method for balanced quadtrees

Elements that fail the error predicate

FIGURE 8: Several iterations of Buffered adaptive subdivision
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Proof: The proof is by induction on k, the depth of the tree. Let B and C denote
the buffer and core elements when the tree has depth k, and let D denote the rest of the
elements. Let A denote the elements of B adjacent to elements of C. Finally, let A’,B'.C’
and D’ denote the corresponding sets in the depth k +1 tree. The inductive claim is that at
the k** step of the algorithm, T is a balanced quadtree, and that no element of A is adjacent
to an element of D. Initially, take the core C as the single element of the tree. Then the
tree is balanced, and the inductive claim holds.

In one refinement step of the Buffer method, elements of A U C subdivide. No element
that subdivides is adjacent to D, by the induction hypothesis. Thus, elements that subdivide
have as neighbors only elements that also subdivide, and elements of B — A that are the
same size. The new elements that exist after subdivision have edges no less than half as long
as the edges of some neighbors, so balance is preserved.

Because the error predicate is well behaved, the elements of C’ are a subset of the children
of elements of C. From the algorithm, B’ = child(C U A) — C’. A child of an element E € A
splits to form smaller elements, but none of the smaller elements is both adjacent to a child
of an element of C and adjacent to an element of B — A. The elements of B — A are elements
of D', so none of the smaller elements is adjacent both to an element of C’ and to an element
of D'. O.

Each of the methods has strengths and weaknesses. The rebalancing method yields the
minimum balanced quadtree contained in a given general quadtree. The Buffer method, by
splitting extra elements to maintain the buffer, can produce a larger number of elements.
Initial experience with implementations of each method indicates that, in graphics applica-
tions, the Buffer method typically creates 40 — 50% more elements than the Rebalancing
method. The Rebalancing method is also more flexible than the Buffer method; since it
is can easily be extended to allow the subdivision of large elements as well as small ones.
This could be helpful in the event that the data is ill-behaved and a particular element that
satisfies the error predicate is split to form some elements that do not satisfy it. In such a
circumstance, the decision not to subdivide an element must be reversible.

On the other hand, the Buffer method is local; an element subdivides based only on

information about itself and its neighbors. This property can be useful for a parallel im-
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plementation, since it limits interprocessor communication. Moreover, once all elements at
depth k have been adaptively split the elements at depth k — 1 or less are never subdivided
again. This allows finite element computations, for example, to begin on coarser elements
before the subdivision of the finest elements is complete. In some graphics applications, the

portions of the quadtree at depth k — 1 or less can be processed and discarded immediately.

5 Producing conformal simplicial quadtrees

Either the two previous methods can be used to create balanced quadtrees in arbitrary
dimensions. However, many applications require a mesh of conformal elements. This section
describes a new algorithm for converting a balanced simplicial quadtree into a conformal
simplicial quadtree. In a general quadtree of n dimensions, each non-leaf node has 2" children,
but in a conformal quadtree, a non-leaf node may have 2™ children, m < n, if all the children
are leaves. The elements form a conformal mesh, so that the intersection of any two elements
in the tree is a proper subface of each. The method is dimension independent.

The procedure is called vertez marking, and works as follows. Given a balanced quadtree,
mark, for each element in the tree, any vertex of that element that coincides with a vertex
of a smaller element. If m + 1 vertices of an element E are marked, then these m + 1 vertices
define a m dimensional subface F' of E. Next, recursively decompose F into 2™ subsimplices
of dimension m by restricting the full recursive subdivision of E to F. Finally, decompose
E into 2™ subsimplices of dimension n by projecting from the n — m unmarked vertices of E
to each of the m dimensional subsimplices. Figure 9 illustrates an example of this method

applied to a balanced triangular quadtree.

Theorem 4 Given a balanced simplicial quadtiree, the vertez marking method produces a

conformal quadtree.

Proof: The proof is by induction oﬁ the depth k of the quadtree. We consider a sequential
implementation of the method, in which all vertices of the smallest elements of the tree are
marked, and elements of the next higher level are split according to those markings, then
marked themselves. Initially, the subset of elements at depth k forms a conformal partition,

and all such elements have marked vertices.
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Edges of balanced subdivision

(0] Marked vertices

Edges added for conformality

FIGURE 9: Conformality using vertex marking

Suppose, then, that the elements at depths greater than ¢ form a conformal partition,
that all vertices of those elements are marked, and that elements at depths up to i form
a balanced partition. Let F' be an m-dimensional simplex that is a face of at least one
element E at depth ¢ — 1 and properly contains m-dimensional faces of elements Gy, ..., G,
at depth :. Since all the vertices of G; are marked, all the vertices of F' are marked as well.
These elements G; are children of elements that contained F as a subface. Vertex marking
subdivides F' into 2™ subfaces. Because the decomposition of a simplex and its subfaces is
symmetric, the subdivision of F' produces the same decomposition now as it did when the
elements G; were created, and the children of E meet the corresponding G; conformally.

No vertex at level i — 2 is marked at this stage, because level i — 1 as a whole has not
been marked. Of the level : — 1 vertices, only those also at level : have been marked, and the
balance of the partition prevents a vertex from being part of level i and i — 2 simultaneously.
Therefore, levels 0 to i — 1 of the partition remain balanced.

Finally, after marking all the vertices of all the level : — 1 elements, the conditions
necessary to apply vertex marking to the next level of the quadtree are satisfied and the part
already processed forms a conformal partition. O.

The vertex marking method subdivides any element of dimension m into at most 2™

16



subelements during conformality conversion. Methods that introduce extra vertices at the
centroids of subfaces and project from centroids to lower dimensional subfaces often generate
many more elements. For example, the method of [HW88] may subdivide a triangle into
as many as five subtriangles and a tetrahedron into as many as 20 subtetrahedra during
conformality conversion. The vertex marking method also produces very few distinct shapes,

as figure 10 illustrates.

6 Conclusions and Future Work

This paper has described dimension-independent methods for generating subdivisions of
space. Although the primary focus has been upon simplicial subdivisions, some of the
methods are shape-independent as well. That is, any recursively decomposable shape can
serve as the standard element. We believe that practical, efficient procedures to automatically
generate good meshes result from the application of these ideas.

A number of mathematical questions arise from this work. For example, what families
of simplices besides the ones discussed are recursively decomposable? If other such families

exist, do any include simplices with better aspect ratios? We conjecture that no other

FIGURE 10: Space can be adaptively triangulated with five shapes.
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families of recursively decomposable simplices exist in dimensions higher than two, but a
mathematical proof of this conjecture would be most satisfying.

It would also be interesting to study the relationship between the shape of an arbitrary
simplex and the shapes of its components when it is subdivided by one of our algorithms.
There is more than one way to map an arbitrary simplex to a Q-simplex, and one of these
mappings is likely to be better than the others. An algorithm to determine the best such
mapping would be a worthy goal.

Finally, we hope soon to extend vertex marking to n-cubes. Many applications use cubical
meshes and they will certainly remain popular. A dimension-independent way to irregularly
divide an n-cube into smaller topologically equivalent elements, bounded by multilinear
surfaces, could be valuable in those applications that manipulate higher dimensional data.

The authors are grateful to Ron Goldman for his careful reading and constructive criticism

of an earlier draft of this paper.

Appendix - The subdivision of simplices

Theorem 5 The aspect ratio of a Q-simplez in n dimensions is given by

Vv2n
n—1+\/_2-'

In particular the Q-tetrahedron has an aspect ratio near 0.7174.

AR, =

In the following, we assume that the Q-simplex " is defined over the n-cube [-1,1]",
rather than over [0, 1]".

Proof: The circumcenter of I is the origin and its circumradius is rereum = /7.
The incenter (co,...,cn-1) lies equidistant from each of the hyperplanes that bound the Q-
simplex, and that distance is the inradius r;, of the Q-simplex. Formally, the constraints

are

Tin = 1+4+cCno
= (c—cis1)/V2,Vi€0,...,n =2

l1-co
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which suggests that the ¢; form an arithmetic sequence symmetric about zero. The substi-

tution ¢; = (i — (n — 1)/2)d reduces the constraints to two,

1+d(n—-1)/2
-d/V?2

Tin

Tin

and leads to the conclusion that r;, = % Dividing rin by rcircum and multiplying the
result by n yields —¢2%, as stated. O.

Stretching or shrinking a Q-simplex in the direction of its longest edge changes its shape,
and thus its aspect ratio, but does not change its recursive decomposability. That is because
all the similar subsimplices have longest edges parallel to the longest edge of their parent,
from the construction. Some particular amount of stretching maximizes the aspect ratio and
yields much improved recursively decomposable simplices. In particular, the Q-tetrahedron

may be compressed by half along its longest edge to form a particularly well-shaped tetra-

hedron, a tetragonal disphenoid [Cox73] with aspect ratio near 0.949.

Theorem 6 Let s, = (a — 1)/n. Let S,(a) denote the n x n matriz

(1+3ﬂ Sn LR sﬂ Sn \
Sn 14+s, ... Sn Sn
Sn Sn oo 143, Sn

\ Sn Sn ...  Sn 1+s,,}

For any vector v, S,(a)v is a translation of v parallelto (11 ... 1), and Sa(e)(11 ... 1) =
a(ll ... 1).

Proof: For any vector v, Sp(a)v — v = 3,(T;v)(1 1 ... 1). The second part of the
theorem follows from simple linear algebra. O.

The matrix Sp(a) is the stretching transformation described above. It remains to choose
the best value of « for a particular dimension.

Under a stretching transformation, the constraints that determine the incenter change

only slightly. All the planes that bound the simplex remain unchanged, except that 14+co = 0
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becomes

a_ln—l
- .=
1 +co o= gc,

and 1 — ¢,—; = 0 becomes

a— 1 n—-1
l—choy+—— ) c=0.
an 1=0
As a result, the constraints that determine the incenter and inradius are
a— 1 n-1

Tin = (l_cn—l+

> q)/\/l -1/n+1/a?n

1=0

= (ci—ci1)/V2,Vi€0,...,n=2

(14c— a—;;'fc;)/\/l —1/n +1/an,

1=0

and again the coordinates ¢; form a arithmetic sequence symmetric about the origin. The

substitution ¢; = (¢ — (n — 1)/2)d gives

Tin

(1+d(n =1)/2)/\/1 =1/n + 1/a?n
Tin = —d/\/i7
which has the solution r = /2

n-1+4/2(1=1/n+1/a3n)’
Having determined the inradius for the stretched Q-simplex, it remains to calculate the

circumradius. The circumcenter c is given by ¢; = (1 —a?)(1 — (2i +1)/n) and circumradius
by \/(1 —a?)?(n/3 —1/3n) + a*n. The maximizing choice @ = 1/v/1 + n gives a simplex
with aspect ratio ,/(—,ﬁ‘m. The proof of these statements follows from elementary, if

tedious, algebra and calculus, and is omitted. Although the aspect ratio does fall toward

zero as the dimension grows, the aspect ratios for the first few dimensions are quite good.

Uniqueness of the decomposition

The decomposition of an element has the “corner-chopping” property when any vertex of that
element is a vertex of exactly one of its descendents. The symmetric decomposition of the
Q-simplex has the corner-chopping property, as can be seen by considering the triangulation
of each of the n simploias that form the decomposition. In each simploid, a copy of standard
Q-simplex L™ appears, and in the j-th simploid, the j-th vertex of " coincides with a vertex

of the larger Q-simplex.
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Corner-chopping is a symmetry property of the subdivision. A final theorem asserts the

uniqueness of such symmetric subdivisions of tetrahedra.

Theorem 7 The set of stretched Q-tetrahedra contains all the tetrahedra which can be re-
cursively divided by corner-chopping into tetrahedra that are equivalent under translation,
rotation and reflection. Among the stretched Q-tetra'hedra, only a rhombic tetrahedron can
be recursively divided by corner-chopping into tetrahedra that are equivalent under translation

and rotation.

Proof: Label the vertices of a tetrahedron V4, ..., V3, and let E;; denote half the length
of the edge from V; to V;. Let V;; denote the midpoint of the edge V;V;. The interior
of the tetrahedron can be divided into four similar outer tetrahedra, with edge lengths
E;;,0 £ 1 < j £3, and an octahedron. Figure 11 illustrates this decomposition.

The volume of this octahedron is equal to four times the volume of an outer tetrahedron,
so a recursive decomposition based on corner-chopping must divide the octahedron into four
inner tetrahedra. One way to divide the octahedron is to pick two nonadjacent vertices, V5,
and V;; for example, and consider each of the edges of the parallelogram V5, V12V23Vo3. Each
pair of points at the ends of an edge of the parallelogram, together with V5, and Vi3, lies
at the vertices of a tetrahedron, and the four tetrahedra so constructed fill the interior of
the octahedron. Either of the other pairs of nonadjacent vertices could be picked instead,
but the three resulting subdivisions of the octahedron are topologically identical. No other
subdivision into as few as four similar tetrahedra is possible, because there is no way to pick
four vertices of the octahedron to make a nondegenerate tetrahedron, except the ways that
induce one of the three triangulations already mentioned.

For each of the four inner tetrahedra, five of its edge lengths are known to be Ej; for
some i and j, and the sixth is the length of the edge Vop2Vis. Each of the four has edges
of length Eg;, E13, E;3 and Egs, but two have a fifth edge specified to be of length Eoq,
while the known length in the other two is E;3. From this, it follows that the inner and
outer tetrahedra can be identical only if the length of the edge Vo2Viz = Eo; = Ey3. In what
follows, we call this constant edge length b.

The constraint above is sufficient to ensure that each of the inner tetrahedra has edge
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FIGURE 11: Tetrahedron = 4x tetrahedron + octahedron
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lengths {E;;},0 < i < j £ 3, but it is not sufficient to guarantee that such a tetrahedron
is similar to the outer tetrahedra. In the outer tetrahedra, the edges of length b are not
adjacent, and the edges of lengths Eo;, E12, E23, Eo3 appear in cyclic order to form a skew
quadrilateral. In the inner tetrahedra, the edges of length b are again not adjacent, but the
other edge lengths appear in either of two different cyclic orders around a skew quadrilateral.
Those orders are Ea3, Eo1, E12, Eos and Ei2, Ez3, Eo1, Eos. These three distinct cyclic orders
must describe identical quadrilaterals if the subdivision is to produce identical tetrahedra.
Let ¢ denote the value Eg3 and let ¢ be distinct from the other three edge lengths.
The other three values must be indistinguishable, because each appears as the edge length
opposite c in one of the cyclic orderings of the edge lengths. Let a denote this common edge
length. Figure 12 reflects the new edge labeling, based on the conclusions reached so far.

The set of tetrahedra we have left to consider has three degrees of freedom; one represents

FIGURE 12: An octahedron dividing into tetrahedra
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a uniform scaling factor and disappears if we set a = 1. Fixing a value for another. b for
example, uniquely determines c. Therefore, there is only one degree of freedom left to choose
a recursively decomposable tetrahedron. The stretched Q-tetrahedra form a one-parameter
family of recursively decomposable tetrahedra, which includes tetrahedra with all possible
aspect ratios. It follows that these two families of tetrahedra are the same.

Geometers who have studied the question of which tetrahedra fill space distinguish be-
tween those that require reflections to map one element to another, and those which do not
[Sen81]. The tetrahedra that satisfy the constraints developed above can only be said to fill
space in the weaker sense.

Suppose, for example, that the edge lengths a, b, and c are distinct. In that event, each
tetrahedron has two faces that are scalene triangles. An examination of figure 12 reveals that
a traversal of the edges of such a triangle in the order abc can be a clockwise traversal, when
viewed from outside the tetrahedron, or a counterclockwise traversal. However, on any one
tetrahedron the traversals of the scalene triangles are oriented similarly. That tetrahedron
cannot be affixed face to face with an identical tetrahedron along that face, only with a
tetrahedron that has a similar triangle of opposite orientation. Therefore, a recursively
decomposable tetrahedron with a scalene face cannot fill space in the stricter sense.

That leaves only the possibility that a recursively decomposable tetrahedron with isoceles
faces can fill space in the strict sense. The rhombic tetrahedron has isoceles faces and is there-
fore identical to its reflection. Thus, it is the unique, space-filling recursively decomposable

tetrahedron. O.
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