A Subgradient Algorithm
for Solving Nonlinear
Integer Programming Problems

Robert Bixby,
John Dennis, Jr.,
Zhijun Wu

CRPC-TR90019
1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Solving Nonlinear Integer Programs with a
Subgradient Approach on Parallel
Computers

Robert Bixby, John Dennis, and Zhijun Wu
June 8, 1992

Many large, and hard, nonlinear integer programming problems—or more
generally mixed-integer nonlinear programming problems—arise in both the-
oretical study and practical applications. No general and efficient solution to
these problems can be found with traditional computers. Thus, it becomes
necessary to develop new algorithms for solving these problems on advanced
architectures, such as parallel computers. This article describes a new algo-
rithm, developed at the Center for Research on Parallel Computation at Rice
University, for solving nonlinear integer programs and shows how the solution
to a nonlinear integer program can be achieved on a parallel computer.

Nonlinear integer programming is concerned with solving the problem

min f(=) (1)
z € B*={0,1}"

or its natural extension

min f(z) (2)
z € R* integral,

where f : R* — R is a general nonlinear function.

This class of problems contains many NP-hard problems and has both
theoretical and practical applications. For example, consider the problem
that for any norm || - ||,

min | b— Az || (3)
r € R integral,

where b € R™ and A is an mxn matrix with integer elements. This problem,
called the closest vector problem in integer programming, has been proven
to be NP-complete even for simple norms such as l; and lo.

Another example is related to the solution of a class of more general
problems; mixed-integer nonlinear programming problems. It turns out that
under some circumstances, problems of this class can be reduced to general
nonlinear integer programs. For instance, an unconstrained mixed-integer
nonlinear program,

min g(z,y) (4)
y € R™ (5)
r € R* integral

can be formulated, under some appropriate assumptions, as the following
problem:

min f(z) (6)
z € R* integral,

with f(z) = min {g(z,y): y € R*}.

Mixed-integer nonlinear programming has recently found an important
application in the steady-state optimization of gas pipeline network opera-
tion. Percell [4] studied three model problems for pipeline networks with up
to 12 compressor stations, each of which contains several compressor units.
Given demands and resources for the network, the goal of the optimization
is to find steady-state profiles of pressure, flow, temperature, and compres-
sor station configurations (i.e., choice of compressor units to be run). These
solutions are optimal for chosen objectives, such as minimizing the amount
of fuel, maximizing the total flow, and maximizing gas inventory.

Mathematically, the problem is formulated as a minimization of a non-
linear objective function subject to nonlinear equality constraints. There are

2

two groups of variables: continuous and discrete. The continuous variables
correspond to pressures, flows, temperatures, speeds, powers, etc. The dis-
crete variables correspond to compressor stations, and their values are the
number of compressor units to be run.

There are several well-studied methods for nonlinear continuous optimiza-
tion. The challenge of applying them to the pipeline optimization problem
lies in finding an effective way to handle the discrete variables, i.e., in de-
ciding how many compressors should be used and which should be turned
on or off for the network operation. Simply enumerating all possible val-
ues for the discrete variables is infeasible as there are exponentially many
combinations with respect to the number of discrete variables. Besides, the
number of discrete variables tends to be large in practice. Anglard and David
[1] considered a gas pipeline network with 196 compressor stations, each of
which contained up to eight compressor units. A robust way to deal with
the discrete variables is to solve a nonlinear integer program, as illustrated
in problem (6). ’

Several approaches to the solution of a nonlinear integer program have
been studied in the last 30 years (see [3] for a general review). The main
ones are enumeration, algebraic, and linearization approaches. Most of them
work for problems with special structures. But for problems with general
objective functions, such as problem (6) the enumeration method is hardly
efficient, and the other two approaches cannot be applied owing to their
special requirements for the forms of the objective function.

1 The Subgradient Approach

Bixby, Dennis, and Wu [2] have proposed a subgradient approach to nonlinear
integer programming problems with more general or complicated objective
functions. With this approach, a nonlinear integer program in the form of
(1) is considered as a nonsmooth problem over the set of 0 —1 integer points.
Notions of subgradients and supporting planes are then introduced for the
objective function at integer points. By computing subgradients and sup-
porting planes, a sequence of linear approximations to the objective function
is constructed, and the optimal solution is found by successively solving the
sequence of linear subproblems.

More specifically, the subgradient algorithm iteratively searches for the

solution among integer points. At each iteration, it generates the next iter-
ative point by solving the problem for a local piecewise linear model that is
constructed from the supporting planes for the objective function at the set
of iterative points already generated. The supporting planes are computed
by using special continuous optimization techniques. The problem for the
local piecewise linear model in each iteration is equivalent to a linear integer
minimax problem, which can be solved with a standard method for linear
integer programming.

In Algorithm-1, f7, the restriction of f to B", where B = {0,1}", is
called the discrete objective function and df"(z(¥)) is the subdifferential of
fm at (). Formally, the algorithm can be outlined as follows:

Algorithm~1 { The Subgradient Algorithm}

0 {Initialization}
T=0,H=0,:=0
pick up z() € B™
1 {Iteration}
do whilei <m
1.1 {Optimality testing}
if z®) € T or 0 € 8f7(z®) is known
then
z() is the optimal solution, stop
1.2 { Generating supporting planes}
T =TuU{z"}
H = HU{g0 : g0 (z) = f7(a9) + Ly (z = 2V), s, € 0f7(a1)}
1.3 {Solving a linear integer minimaz problem}
find a solution ™ for
min,esn {p(z)=max {g(z): g € H}}
1.4 { Updating}
1=1+1
z(0) = ()
end do

There are three major steps at each iteration: optimality testing, genera-
tion of a supporting plane, and solution of a linear integer minimax problem.

4

The essential work in the first step is to construct the optimality criteria.
The challenge of the second step lies in finding a method for computing a
subgradient such that a supporting plane can be generated. For the third
step a special linear integer program needs to be solved.

The optimality criteria are based on the following facts (given in [2]):

Fact-1: A necessary and sufficient condition for z* € B™ to be the
minimizer of f7 (or f) over B is 0 € 0f"(z*).

Fact-2: For the sequence T = {z\) € B*, j =1, ..., i} generated by the
algorithm at the sth iteration, if 35 < ¢ such that () = z(), then z(*)
must be an optimal solution.

It follows from Fact-2 that the algorithm stops whenever an iterate is
repeated. Because there are only finitely many distinct iterates, the algorithm
is finite.

Consider the generation of a supporting plane for the function f™ at a
given integer point Z. If g is the function for the supporting plane, then g is
a linear function and

9(z) = f7(z) + 5" (z - 7) s € 9f7(z). (7)

To obtain this function, f7(Z) can be computed easily, but the subgradient
s must be chosen such that g bounds f" from below as tightly as possible. In
the case where f is convex and differentiable, it is easy to verify that V f(Z),
the gradient of f at Z, is a subgradient of f” at Z. A trivial way to choose
s, therefore, is to set s to Vf(Z). However, with this subgradient, g could
be too “steep” to be a preferred supporting plane; in this case a subgradient
other than V f(Z) is required, such that g is as “flat” or “close” to f" as
possible.

Unfortunately, there are no simple methods for computing any subgra-
dients for general nonlinear nonsmooth functions. In this algorithm sub-
gradients are obtained by a process that can successively improve a given
subgradient. The process starts with the subgradient s = Vf(Z) and then
updates it such that the corresponding supporting plane g is “lifted,” i.e.,
made “flatter” or “closer” to f7. The updated s remains a subgradient as
long as g still supports f" at Z, i.e.,

fx)

50)

Figure 1: The lifting process for computing subgradients.

9(z) < f'(z) Vze B (8)

The lifting process continues until the best possible supporting plane is
obtained. However, for every update, condition (8) must be verified. For a
given subgradient s, if S is defined such that z € S if f(z) < g(z), then
condition (8) is equivalent to the following statement:

A vector s is a subgradient of f” if and only if the interior of S
does not contain 0 — 1 integer points.

Figure 1 illustrates with a simple example how the lifting process is con-
ducted and condition (8) is guaranteed. In this example, the lifting process
is applied to find a subgradient of f7 at Z. First, s is set to Vf(Z). The
supporting plane defined by this subgradient is ge). Then s is updated to
“lift” g(o) a little bit, and g(;) and S(;) are obtained. Let A = {z € R*:
z; >0, if =1, andz; < 1if z; =0, ¢ = 1,...,n}. Geometrically, A

6

is a region that contains B", and its boundaries are formed by hyperplanes
z;=1—2%;, ¢ =1,...,n. Once it has been observed that the interior of A
contains no points in B™ other than Z, condition (8) holds if S(;) is inside of
A. In general,

for each S obtained in the lifting process, the interior of S does
not contain 0 — 1 integer points as long as S is contained in A.

To obtain better subgradients, s can be further updated until the correspond-
ing S hits the boundary of A (see g(;) and S(z) in Figure 1).

Now consider the updated subgradient s and its corresponding S. Let d;
be the distance between S and the ith boundary of A. Then d = (dy,...,d,)
is a function of s. It can be proven that the function is well defined under
some assumptions. The lifting process can then be formulated mathemati-
cally as an optimization problem:

min || d(s) || (9)
st. d,(S)ZO i=1,...,n

The major computation for this optimization problem is the evaluation of
the function d(s) for each s. In terms of the lifting process, distances between
the boundaries of S and A need to be calculated for each lifting step. If the
distances are positive, S is inside A and hence condition (8) holds. In any
case, d;(s) for any 7 can be calculated by first computing an extreme point
of S along the z; direction and then calculating the distance between the
extreme point and the ith boundary of A. The extreme point of S can be
found by solving a relatively simple continuous optimization problem (linear
objective function with only one nonlinear constraint).

Finally, the third step of each iteration involves the solution of a linear in-
teger minimax problem. Because the problem can be formulated as a special
linear integer program, a branch-and-bound procedure can be applied. To
compute the bound for every branching step, the standard simplex method
is used to solve the dual problem of the linear relaxation problem.

2 Generating a Supporting Plane in Parallel

As described in the preceding section, the subgradient algorithm requires that
a number of subproblems be solved at every iteration. These subproblems are

7

difficult, and their solutions involve large amounts of computation. Reducing
the time required to solve these subproblems appears to be a very important
and challenging, consideration. Bixby, Dennis, and Wu [2] propose the use
of parallel computers to speed up the algorithm so that reasonably large
problems can be solved. In fact, parallelism can indeed be exploited for the
algorithm to achieve high performance.

The subgradient algorithm carries at the top level an iterative procedure
that is sequential and cannot be done in parallel. Numerical experiments
show that for most problems the algorithm can find an optimal solution
in only a few, at most O(n), iterations. . Therefore, the algorithm can be
effectively parallelized if the computation at each iteration can be done in
parallel.

For each iteration the major computational costs are those of generating a
supporting plane and solving a linear integer minimax problem. To generate
the supporting plane, the lifting process is conducted to achieve a solution
to problem (9), where most of the work is in the evaluation of the function
d(s), as discussed previously. Computing each component of d(s) involves the
solution of a continuous optimization subproblem. A total of n subproblems,
therefore, need to be solved to obtain all components of d(s) for each given
s. The computation here could be very expensive.

Each of the n subproblems is totally independent, however, and they all
have almost the same structure and size. Thus, it is easy to introduce par-
allelism to do the function evaluation, and if up to n processors are used,
subproblems can be distributed evenly over the processors and solved in par-
allel with little communication overhead. Parallelism of this type is suitable
for such parallel systems as the Intel iPSC/860 hypercube, with up to 128
processors, and the nCube, with up to 8192 processors. For large problems
(n = 100 ~ 1000) very high performance can be achieved as many, up to n,
processors can be used.

3 Parallel Branch-and-Bound for the Linear
Subproblem

The linear integer minimax problem induced at each iteration by the sub-
gradient algorithm is solved by applying a branch-and-bound procedure, a

popular scheme for solving linear integer programming problems. But for
large problems—those with, say, 100 to 1000 variables—the method may
still produce so many subproblems that the solution cannot be obtained in
a reasonable time.

The branch-and-bound procedure can be represented by a tree, with
nodes corresponding to subproblems and branches corresponding to relations
among subproblems. The process can thus be parallelized by exploiting the
tree structure, although it is not straightforward to do so. The tree structure
is constructed dynamically as the procedure moves forward, and the par-
allelism among subproblems often is not known until the subproblems are
generated.

Algorithm-2 is the parallel branch-and-bound procedure used within the
subgradient algorithm for the linear subproblems. The algorithm is based on
the general branch-and-bound method, but a multiple branching strategy is
used instead of the more common binary branching. More precisely, if p pro-
cessors are used, the algorithm always makes p branches at every branching
step, producing p subproblems and solving them, one for each processor, in
parallel. After solving the subproblems, the algorithm proceeds by making
branches recursively for the new subproblems.

With the multiple branching strategy, processors can be scheduled in a
systematic way: Each time p subproblems are produced, they are assigned
to the p processors, one for each processor. All groups of p subproblems
produced in this way are almost the same, except for some variables set
to different values. The load is thus balanced automatically in solving the
subproblems. Moreover, because subproblems are generated regularly and
correspond to processors, first subproblem for first processor, second sub-
problem for second processor, etc., processors do not need to trace a global
subproblem stack to find the subproblems they need to solve. Instead, each
processor has only a small local stack of its own subproblems.

Globally, the parallel branch-and-bound procedure conducts a depth-first
search because at each step the new subproblems always are processed first.
But after every group of p subproblems is solved, they can be sorted accord-
ing to some priority. The branching can then be made for the subproblems
in the sorted order (local best-first branch).

Algorithm—2 {The Parallel Branch-and-Bound Algorithm}

9

* {Initial Procedure}
initialize p, z,, z and z (p represents the initial subproblem)
solve p
let z, and z, be the optimal value and solution
if z, is integral then
z = min{z,z,}, £ = z,, stop
push(p, P) (P is a local subproblem stack)
branch—and—bound(1, z, z)
pop(P)
* {End of Initial Procedure}

* { Recursive Procedure}
branch—and-bound(s, z,)
broadcast z, from processor :
if z, > 2, return
if processor # = ¢ then
select branching variables
broadcast branching variables from processor %
generate and solve subproblem p
let z, and , be the optimal value and solution
if z, is integral then
z =min{z,2,},z =z,
update z and z if necessary

‘ pUSh(p, P)
for j = 1,...,# of processors do
branch—and-bound(j, z, z)
pop(P)

* {End of Recursive Procedure}

4 Remarks

Computational experiments have been conducted with a parallel implemen-
tation of the subgradient algorithm on a 512-node nCube located at the
California Institute of Technology. The program is written in Express C, an
extended C language for distributed-memory parallel computers. In addition
to standard C, the language provides a variety of message-passing functions.

10

e s

20

18

16 oot

14 /
12 /
10 —

speed up

2 / '

of processors p in [log2(p)]

Figure 2: Speed-up obtained with varying numbers of processors.

Small problems (up to 64 dimensions) have been tested. Preliminary
results show that most of the test problems can be solved by the subgradient
algorithm in only a few, at most O(n), iterations, if proper initial guesses are
used. For a test problem of dimension n there are 2" 0 — 1 integer points.
In the worst case, therefore, the algorithm might need to run 2" iterations,
which cannot be done in a reasonable time, even for an average n, say 32,
for which there are 4,294,967,296 0 — 1 integer points in total. In reality,
however, most of the test problems can be solved more efficiently than by
exhausting all possible integer points. For test problems of dimension 32 or
64, with some initial guesses, only several iterations were taken.

For the parallel implementation of the program on the nCube, if the num-
ber of processors p (p < n) is doubled, the total computation time can often
be reduced by almost half. Figure 2 shows the speedup that can be obtained
for a 32-dimension test problem when different numbers of processors are
used. The greatest speedup is about 18, which can be improved by testing
larger problems.

11

References

[1] P. ANGLARD AND P. DAVID, Hierarchical Steady-State Optimization
of Very Large Gas Pipelines, Pipeline Simulation Interest Group Annual
Meeting, Toronto, Ontario, Canada (1988).

[2] R. BixBY, J. DENNIS AND Z. WU, A Subgradient Algorithm for Non-
linear Integer Programming and Its Parallel Implementation, Technical
Report, Center for Research on Parallel Computation, Rice University,
Houston, TX, (1991).

[3] P. HANSEN, B. JAUMARD, V. MATHON, Constrained Nonlinear
0-1 Programming, RRR #47-89, RUTCOR, Rutgers University, New
Brunswick, NJ, (1989).

[4] P.B. PERCELL, Steady-State Optimization of Gas Pipeline Network Op-
eration, Pipeline Simulation Interest Group Annual Meeting, Tulsa, OK,
(1987).

John Dennis and Robert Bixby are professors in the Department of Math-
ematical Sciences at Rice University. Zhijun Wu is a postdoctoral research
associate at the Advanced Computing Research Institute at Cornell Univer-
sity.

12

