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Abstract

Given a point sufficiently close to a nondegenerate basic feasible solution z*
of a linear program, we show how to generate a sequence {p*} that converges
to the 0-1 vector sign(z*) at a @Q-cubic rate. This extremely fast convergence
enables us to determine, with a high degree of certainty, which variables will be
zero and which will be nonzero at optimality and then construct z* from this

information.
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1 Introduction

Interior point algorithms for the linear program

minimize c¢’z,
subject to Az = b, (1)
z >0,

where ¢,z € R*, b € R™ and A € R™*" for m < n, do not search through the
set of vertices of the feasible set to obtain an optimal vertex as does the simplex
method. Instead, a primal interior point algorithm generates a sequence of interior
(or strictly feasible) points {z*} that converges to an optimal solution. For such an
interior point method, the construction of appropriate stopping criteria is often a
delicate issue. Additional concerns arise when a highly accurate solution is required
or when an optimal vertex is required as is the case in some applications, e.g., integer
programming. It is therefore of value to develop an iterative procedure with a high
convergence rate that can locate an optimal vertex from a given reasonably good
approximate solution.

In this paper, we present and analyze a new method for locating an optimal vertex
z* of a linear program from a given approximate solution. Working with an auxiliary
problem, this method generates from the given approximate solution a sequence that
converges to the 0-1 vector sign(z*). Our usage of the sign function takes zero as the
sign of zero; otherwise it is the standard usage. Using the information provided by
this 0-1 vector, z* can be recovered from the linear constraints Az = b by setting to
zero those variables that have been identified as zero and then solving for the nonzero
variables. The significance of this approach is that the convergence rate of this new

method is Q-cubic if the optimal vertex is nondegenerate.



In anticipation of future use, we state the dual linear program of (1)

maximize by
subject to ATy +z=c¢, (2)
2> 0.

In (1.2) z € R™ is the vector of dual slack variables. We will conveniently assume
throughout this paper that the matrix A has full rank m.

This paper is organized as follows. In Section 2, we present our method for locating
the nondegenerate optimal vertex from an approximate primal solution. In Section
3 we show that this method is @-cubically convergent and also briefly discuss its
implementations as well as its dual variant. In Section 4 we give several numerical
examples which demonstrate the convergence behavior of our method. Concluding

remarks are given in the final section.

2 The Algorithm

Recently, Tapia and Zhang [1] proposed a technique for identify optimal bases for inte-
rior point methods. The technique was motivated by the observation that essentially
every interior point method motivated and influenced by the Karmarkar algorithm
[2] involves a matrix of the form DAT(AD?AT)~'AD, where D is a diagonal matrix
that changes at each iteration. In primal algorithms (affine variants of the Karmarkar
algorithm, for example, see [3], [4] and [5]), we see D = diag(z). In dual algorithms
(see Adler et al. [6] and Monma and Morton [7], for example), we see D = [diag(z)]™?,
where z is the vector of dual slack variables. And in primal-dual algorithms (see Ko-
jima et al. [8], for example), we see D? = diag(z)[diag(z)]™!. In [1], Tapia and Zhang
showed that under suitable assumptions, optimal basis information can be obtained
from the diagonal of this matrix DAT(AD?AT)~'AD which they called the indicator
vector or simply the indicator. Ye and Todd (1987) [9] perhaps were the first to point

out that the diagonal elements of such a matrix contain valuable information.



For a fixed matrix A € R™**(m < n), consider the matrix-valued function H :
R™ — R™*" defined by

H(d) = DAT(AD*AT)*AD, (3)

where d € R™, D = diag(d) and the superscript “+” denotes the generalized inverse.

The Tapia-Zhang indicator is defined as the function ¢ : R® — R"™ obtained as the
diagonal of H(d), i.e.,

q(d) = diag(H(d)) or g¢i(d) = Hi(d), i=1,2,3,...,n. (4)

This function g(d) is defined for all d € R™; however it will not be continuous
at points d where the matrix AD?AT changes rank in every neighborhood of d. At
points d where AD?AT has constant rank in some neighborhood of d, q(d) will be
infinitely smooth. It is not hard to see that

0<q(d)<1

for all d € R™ because both H(d) and I — H(d) are orthogonal projections (satisfying
PT = P and P? = P) and, therefore, are positive semi-definite with non-negative
diagonals.

We now define a new function u : R* —» R" as
u(d) = g(Dd). (5)
where D = diag(d). It is evident from the definition of the function ¢ that
u(d) = diag(D*AT(AD*AT)* AD?).

Our method for locating an optimal vertex z* of a linear program from an ap-

proximate primal solution z can be described as follows.

Algorithm 1 Given an approzimate primal solution = of the linear program (1) and
a small number € > 0, set p° = z. For k = 1,2,..., until the criterion (6) (defined

below) is satisfied, compute



The stopping criterion is satisfied when
{i:pf>1-e,1<i<n}J{i:pf <e,1<i<n}={L2,..,n}. (6)

In the algorithm, the tolerance ¢ is allowed to be zero for theoretical purposes. In
practice, € will be chosen as a small positive number.

The procedure of recovering the optimal vertex is as follows. First solve the
square linear system A;w = b for w, where A, is the submatrix of A consisting of the
columns of A which correspond to pf > 1 — ¢ arranged in ascending order of their
column indices. Then construct the optimal vertex z* by extending w to an n-vector

by inserting zeros in the positions corresponding to p¥ < ¢.

3 The Cubic Convergence

We first state without proof two lemmas concerning the properties of the function
q(d) that we will use in this section. These results were proved in [1] and interested

readers are referred to that paper.

Lemma 3.1 For d € R" let q(d) be given by (4) for some A of full row rank. Con-
sider the n-dimensional vector d* where some components of d* may be infinite. As-

sume that the components of d* can be divided into two sets: S, and Sg, such that

1. Sy contains m and Sg contains n — m components of d*;

2. all elements in S, are non-zero and

max{|d}| : &} € Sp} _
min{|d}| : df € Sa}

0; (7)

3. the m by m submatriz of A consisting of columns corresponding to the compo-

nents in S, is nonsingular.

Then, as d converges to d*
if df € Sa,

1,
lim ¢;(d) = ¢:(d") = (8)
d—d* . 0, ifdreSs.



Since d* may have infinite components, we define the derivatives of q at d* by

continuity, for example, ford € R",
Vg(d") = dlirgx_ Vgi(d), 1 =1,2,...,n.

Lemma 3.2 Let g(d) be given as in (4) and d* satisfy the conditions of Lemma 3.1.
Then q(d) is at least twice continuously differentiable at d*. Moreover, the Jacobian

matriz of q(d) vanishes at d*; i.e.,
Vg(d)=0, i=1,2,..,n. (9)

It should not be a surprise that the Jacobian matrix of ¢(d) is zero at d*. According
to Lemma 3.1 either the maximum (¢;(d*) = 1) or the minimum (¢;(d*) = 0) is reached
at d* for every component of ¢(d).

An immediate consequence of Lemma 3.2 is that whenever V?g;(d) exists and is

continuous at d*, then

llg(d) — Il < O(lld — d~||?). (10)

We now need the following two technical results in order to prove our main con-

vergence result.

Lemma 3.3 Let d* € R"™ be finite and satisfy the three conditions in Lemma 3.1.
Then there ezist positive constants 8o and Cq such that for alld € R™ and ||d—d*|| < &

lu(d) = p°|| < Colld = d*I°, (11)
where p* is a zero-one vector of m ones and n — m zeros and p} = sign(|d}]).

Proof: Since d* is finite and satisfies the three conditions in Lemma 3.1 with all
nonzero elements in S, and zeros in Sg, so is D*d* where D* = diag(d*). Therefore,
by Lemma 3.1 u(d) = ¢(Dd) converges to p* as d converges to d*. Also u(d) is
infinitely differentiable at D*d*.



A direct calculation shows (see [1] for details) that

2Py(d*), ifi=j=~and d; =0,
M =9 —=2(d;Pyu(d"))?, ifi=j#¢ d;#0and df =0
ad‘a(iy (Al ’ )y e ) k)
0 . otherwise,

where P;;(d) is the (7, j)-th element of the matrix AT(AD?AT)~'A. That is, if d} = 0,
the Hessian of g¢(d) at d* has only a single non-zero element in the (¢,£) position;
and if d; # 0, then the Hessian of ¢,(d) at d* has on!v non-zeros on the diagonal
in the positions corresponding to zero d;’s. Therefore, if we expand ¢(Dd) at D*d*
using a Taylor expansion and note that its first derivative is zero at D*d* (as proved

in Lemma 3.2), we have
~lu(@) = )l = lla(Dd) = p*)lI < O(IID;d;|1%) + O(|| D*d* — D*d"||*),

where d¥* € R*™™ consists of the components of d* that converge to zero and D¥ =

diag(d*). From the fact that (D*d*); = (d¥)?, one can easily verify that
"Didf|® < |ld* — d*||* and ||D*d* - D*d*|]° = O(||d* — d"|1).

The existence of constants 6y and Cy such that (11) holds follows in a standard fashion

from the continuity of the third derivative of ¢(Dd) at D*d*. This completes the proof.
a

Corollary 3.1 Let p* € R" be a zero-one vector with m ones and n—m zeros. If the
m columns of the matriz A corresponding to the ones in p* are linearly independent,

then there ezist positive constants § and C such that for allp € R™ and ||p—p*|| < 6

lu(p) — p*|l < Cllp - p*|I°. (12)

Proof: The proof follows directly from Lemma 3.3 because p* is finite and satisfies
the three conditions in Lemma 3.1. O
Now we are ready to state and prove the @-cubic convergence result for Algo-

rithm 1.



Theorem 3.1 Let {p*} be generated by Algorithm 1 with e = 0. If = is sufficiently
close to a nondegenerate optimal vertez =* of the linear program (1), then {p*} — p*

Q-cubically, where p* = sign(z*) is a zero—one vector of m ones and n — m zeros.

Proof: Choose z such that ||z — z*|| < min(éo,d) and p = max(Co, C)||z —z*||? < 1,
where 8o,Co and 6,C are positive constants satisfying (11) (with d replaced by z)
and (12), respectively. The proof of convergence now follows by induction. Let
eo = ||z — z*|| and ex = ||p¥ — p*|| for £ > 0. By Lemma 3.3 (with d replaced by x)

and our assumptions,

e1 = [[u(p’) — p*|| < Collz — 2|1° < peo < eo.
So e; < 6. By Corollary 3.1 and our assumptions,

ez = |lu(p") — Pl < Cllp' = ¢"I° < pex < en.

The induction step can now proceed in the same manner. This establishes the Q-linear
convergence. The Q-cubic convergence follows directly from (12). O

Numerical implementation of Algorithm 1 can be carried out basically in two
ways. First, if an orthonormal basis Q(d) of D?AT is computed by a QR method or
an SVD method, then obviously

u,(d) = Q,(d)TQ,(d), 1= 1,2, ey T, (13)

where Q;(d) is the i-th row of Q(d). On the other hand, if a Cholesky factor L(d) of
AD*AT is computed, the triangular system L(d)Q(d) = AD? needs to be solved to
obtain @(d). Then u(d) can be computed from (13).

In the case that the dual linear program (2) is being solved, a dual version of
Algorithm 1 can be devised by letting p? = 1/z;, ¢ = 1,2,...,n, where z is a given
approximation to an optimal dual slack vector z*. It can be easily shown that this
dual version has at least @-quadratic convergence rate for nondegenerate problems

because of the estimate

lla(d(2)) = ¢”ll < O(llz — =71*)

8



proved in [1], where di(2) = 1/z, i = 1,2,...,n. Also such generated sequence {p*}

has the same limit p* = sign(z*).

4 Numerical Examples

We have tested our method using randomly generated problems. All our random
numbers are uniformly distributed on the entire real line. For each problem, we
generate an m by n matrix A and a vertex z*. For simplicity, we make the first m
elements of * nonzero and the rest zero. Correspondingly, we make sure that the
first m columns of A are linearly independent. Also we generate a p=rturbation vector
h and let the initial vector x for Algorithm 1 be z = z* + Th/||h||2. Notice that the
parameter 7 is equal to the quantity ||z — z*||;. We tested Algorithm 1 on a Sun 3/50
Workstation with a machine epsilon of about 2.22 x 10~16, Numerical results for four
such randomly generated problems with various dimensions are tabulated in Table 1.
In this table, the errors ||p* — p*||2, k = 1,2,3,4, are given for each problem, where

k is the iteration count.

Table 1: Numerical results for 4 random problems

Errors |n=10,m=5|n=20,m=10 |n=40,m =20 | n =80, m =40
||z :c*n " 6.00e-02 7.00e-02 6.00e-02 8.00e-02
llpt —p*|| |  3.56e-01 5.48¢-02 1.30e-02 2.63e-02
Ilp* —p*|| |  7.91e-03 7.20e-03 1.48e-04 1.45¢-04
Ip* — p*|| 2.89¢-09 6.34e-06 7.78e-12 1.80e-12
llp* — p*|| 9.16e-16 9.93e-16 1.49e-15 3.08e-15

It can be seen from the table that the convergence rate of Algorithm 1 was indeed
Q-cubic (up to the point where machine epsilon was reached). We also observed

(which is no surprise) cases where z was not close to z*, and {p*} converged to a



zero-one vector corresponding to a nearby vertex.

5 Concluding Remarks

Working with an auxiliary problem, we have shown that the information needed
to construct the nondegenerate optimal vertex of a linear program can be obtained
iteratively from a given good approximate solution at a Q-cubic convergence rate.
While this result certainly has theoretical value, considerably more research is needed

in order to determine its practical value.
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