Multi-Directional Search:
A Direct Search Algorithm
for Parallel Machines

V. Torczon

CRPC-TR89006
May, 1989

Center for Research on Parallel Comr
Rice University

P.O. Box 1892

Houston, TX 77251-1892






RICE UNIVERSITY

Multi-Directional Search: A Direct Search
Algorithm for Parallel Machines

bv

-

Virginia Joanne Torczon

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

_AEN. s

Jonn E. Dennis. Jr.. Chairman
Noah Harding Professor of Mathematical
Sciences

/7 |
S/,
Andrew E. doyd

Assistant Professor of Mathemat{cal
Sciences

Koo Voro L

Kenneth W. Kennedy, Jr.
Noah Harding Professor in Mathematics
in the Department of Computer Science

EEISN

Richard A. Tapia
Professor of Mathematical Sciences

Houston, Texas
May, 1989



1 =l =l

pold amd wd e} wd ) ] =B e = =§ W = w§



Y

Multi-Directional Search: A Direct Search
Algorithm for Parallel Machines

Virginia Joanne Torczon

Abstract

In recent years there has been a great deal of interest in the development of op-
timization algorithms which exploit the computational power of parallel computer
architectures. We have developed a new direct search algorithm, which we call multi-
directional search. that is ideally suited for parallel computation.

Our algorithm belongs to the class of direct search methods, a class of optimization
algorithms which neither compute nor approximate any derivatives of the objective
function. OQur work. in fact. was inspired by the simplex method of Spendley, Hext.
and Himsworth. and the simplex method of Nelder and Mead.

The multi-directional search algorithm is inherently parallel. The basic idea of the
algorithm is to perform concurrent searches in multiple directions. These searches are
free of any interdependencies, so the information required can be computed in parallel.

A central result of our work is the convergence analysis for our algorithm. By
requiring only that the function be continuously differentiable over a bounded level
set, we can prove that a subsequence of the points generated by the multi-directional
search algorithm converges to a stationary point of the objective function. This is
of great interest since we know of few convergence results for practical direct search
algorithms.

We also present numerical results indicating that the multi-directional search al-
gorithm is robust, even in the presence of noise. Our results include comparisons
with the Nelder-Mead simplex algorithm, the method of steepest descent, and a
quasi-Newton method. One surprising conclusion of our numerical tests is that the
Nelder-Mead simplex algorithm is not robust.

We close with some comments about future directions of research.






Vi

-

v

- Acknowledgments

First, [ would like to thank my family. Without their unwavering support | would
never have made it this far. If they ever doubted that a historian could also be a
mathematician, they never let it show.

[ would like to thank the members of my committee; each one has made an
important contribution to this work: Andy Boyd convinced first me, and thea my
chairman, that the last argument needed to complete the convergence prooi was
correct: he then pusned me to a most satisfying generalization. Ken Kennedy shared
his knowledge of parailel computation and pointed me towards a very clever load
balancing scheme. Richard Tapia deserves special credit for ever agreeing to accept me
into the graduate program. He is also responsible for introducing me to optimization
theory. Of late, he has shared his knowledge of the theory for descent methods.
which has helped shaped the final form of my arguments. I have also enjoved our
many conversations on issues as diverse as music, minorities, and machismo.

[ owe special thanks to my chairman. John Dennis. He asked me to stay, gave me
this problem to work on, and made me tough. I owe a great deal to his inimitable
style of motivation: His unerring response to my latest result would be either “You're
wrong.” or “That can’t possibly be true.” — which of course made me all the more
determined to prove that I was, in fact, right. Now he moans that [ am always right,
as if there were no connection.

[ would also like to thank the many other people at Rice from whom I have learned
much: Richard Byrd helped isolate the last link needed to complete my convergence
result. Linda Torczon and Keith Cooper have taught me much about computers and
computation. Nancy Ginsburg shared the early, difficult years of graduate school.
Cathy Samuelsen took up where Nancy left off. Cathy and Karen Williamson suffered
through numerous drafts of my thesis; it is better for their efforts.

Finally, [ would like to thank my husband, Michael Lewis. He was the first, true
believer in this work; [ managed to convince him that I was right before I had even
convinced myself. His faith in my mathematical abilities has pushed me further than
anyone else thought possible. His good taste has left its mark on all this work.






/)

P)

Contents

Abstract i
Acknowledgments o
List of [llustrations v
List of Tables vii
Introduction 1
1.1 Background . .. .. ... ... .. 1
1.2 Choice of search direction and step length . . . ......... ... 4
Algorithm 6
2.1 A description of the multi-directional search algorithm . ... ... . 6
2.1.1 Thereflectionstep . . ................. .. . .. 6

2.1.2 Theexpansionstep . . . ................ ... . 3

2.1.3 The contractionstep . . . ... ............. ... . 10

2.2 New search directions and new step lengths . . . ... ... ... . . 10
2.3 The multi-directional search algorithm . ... ......... I T
24 Discussion . . . ... L 13
Convergence 17
3.1 The convergencetheorem. . . . .. ... ... ............. 17
3.2 Descentmethods . ............................ 18
3.2.1 Guaranteeing strict decrease . . . . . . .. .. ......... 19
3.2.2 Safeguarding the search directions . . . . .. ... ... .... 25

3.2.3 Enforcing step length control . . . .. .. .. ... .. ..., 25

3.3 Proof of the convergence theorem . . . . ... .. ... ........ 40
Implementation Details 42
4.1 Choosing an initial simplex. . . . ... . ... .. .. ......... 42
411 Shape .................. e e e e e e 43



4.1.2 Size

............................ 17
+2 Choosing the scaling factors . . .. ......... ... 48
+3 Stoppingeriteria ... .. ... 30
#4 Qurchoices . ... oo 53
Performance
51 Preliminaries .. ... ... .. 34
5.1.1 The competition . .. ............ . I 33
512 Thetestproblems. .. ........... ... ... . 57
3.1.3  The questions to be answered . ... ....... ... 38
52 Results. . ... 61
3.3 Comclusions . . ... . ... 64
Future research : 75
6.1 Refining the algorithm . . .. ... ... ... . . . . . . . . 6
6.1.1 Parallelism. .. ....... . ... .. .. .. . . . . 6
6.1.2  Performance on non-differentiable and non-convex problems . 78
6.2 Extending the theoreticalresults. . . . ... ... .. ... . . 80
6.2.1 Generalizations of the convergence theorem. . . . ... .. .. 80
6.2.2  Exploring step size requirements. . . . .. ... .... . 81

Bibliography ' 82



p

O P N1
Ov o> L N

3.2
3.3
3.4
3.3
3.6

3.8

Illustrations

The original simplex and its reflection. . . . . . . ... ..., .. ..

The original simpiex with the reflected simplex and its expansion

The original simplex and its contraction . .. .. ...........
The next iteration — with new search directions . . . . . ... .. ..

The next iteration — with new stepsizes . . . . . . ... ... .. ..

The two cases which guarantee a direction of descent . . ... .. ..

Case I: VfudH)T(wE=vH)y>0. ... ... . ...

Case 2: Vf(ud)T(vi-vl)<0. .. . . . . . . . L
Enumerating the vertices — when we know the best vertex . . . . . .
Enumerating the vertices — when we do not know the best vertex .

Enumerating the vertices — after one additional iteration . . . . . . .
Eaumerating the vertices — after two additional iterations . . . . . .
Enumerating the vertices — after removing all the edges . . . . . ..






Tables

Nelder-Mead on Penalty function [ with n =8

Nelder-Mead on extended Powell singular function withn=32. . ..
Nelder-Mead on extended Rosenbrock function with n = 16

Nelder-Mead on Trigonometric function withn=40. . ... ... ..

Nelder-Mead on Variably dimensioned function with n = 16
Nelder-Meadon z¥z withn =32 .. .. ... .............

Nelder-Mead on extended Rosenbrock function with n = 20
Nelder-Mead on z7z with n = 40

......

....................

Multi-directional search on extended Rosenbrock function with n = 16

Multi-directional search on extended Rosenbrock function with step
tolerance ¢ = 0.10D-07

Multi-directional search on z7z with n = 32

..........................

..............

Multi-directional search on z7z with step tolerance ¢ = 0.10D-07
Steepest descent on extended Rosenbrock function with n =16 . . . .
Quasi-Newton method on extended Rosenbrock function with n = 16
Nelder-Mead with noise on z¥z withn=16 .. ... ... .. L
Multi-directional search with noise on z7z withn=16 . ... .. ..
" Steepest descent with noiseon z7z withn=16 . ...........
Quasi-Newton method with noise on z7z withn=16 .. ... .. ..






’}

Chapter 1

Introduction

Lately there has been great interest in developing optimization algorithms that take
advantage of computational parallelism. We have made studies of a parallel muiti-
directional search algorithm to solve the general unconstrained optimization problem:

Given f: R* = R

min f(z) .

z€R™

Our goal has been to develop an algorithm with the following features:
e It conducts a muiti-directional search that can be executed in parallel.
e [t does not require information about the derivative of f.
o It is robust for problems of moderate size.
o It works well with “noisy” function values.
o [t is easy to understand, easy to program, and easy to use.

" We have now developed a new direct search method, which we call the multi-
directional search algorithm, with these properties. Furthermore, we can prove the
algorithm will converge to a minimizer of f under standard assumptions.

1.1 Background

The inspiration for our multi-directional search algorithm has come from the “di-
rect search” methods for unconstrained optimization. The direct search methods are
characterized by the fact that the decision-making process is based solely on func-
tion value information; these algorithms neither require nor estimate, in any direct



sense, derivative information to determine a direction of descent. Severa| of the di-
rect search methods — g particular the Nelder-Mead simplex algorithm 24] and the
pattern search algorithm of Hooke and Jeeves (17] — have long eajoved popularigy
in the community of computational scientists. These algorithms have remaineq pop-
ular for practical reasons. Often. particularly in experimental settings, derivatives
are simply unavailable. In addition, function values based on experimental data are
often “noisy” (i.e.. they can oniy be trusted to a few digits of accuracy) so that finite-
difference approximations may prove unreliable. Finally, most of the direct search
methods are easy to understand. easy to program, and easy to use.

On the other hand, direct search methods have fallen out of favor with the numer-
ical optimization community because, for the most part, they lack any convergence

theory; they are exceedingly slow to converge, even in the neighborhood of a solution;
and they either do not converge to a true solution.

or else they converge very slowly,
when the problem is *not small”

— where by “not small” we mean ten or more
variables. Despite these reservations, the active literature in such fields as analyti-

cal chemistry (e.g. (3], (7], (11], (13], (19], (23], [28], and (30]) suggests that practical
considerations often win out over perceived disadvantages.

Our investigation of direct search methods deserves further comment, therefore,
since it is a distinct departure from the current emphasis on the use of quasi-Newton
methods in optimization. To preserve the sound theoretical properties of the se-
quential quasi-Newton methods, current parallel implementations of quasi-Newton
methods consider only one search direction at each iteration. We though it would be
of interest to focus, instead, on conducting a multi-directional search that could be
executed in parallel. The direct search methods suggested a natural way to explore
this approach.

Researchers in optimization generally agree that there are two main areas where
improvement in the speed of execution for optimization algorithms can be made.
First, since matrix operations contribute significantly to the cost of quasi-Newton
procedures, immediate gains can be realized by employing advances made in paral-
lel numerical linear algebra. In fact, Coleman and Lj (12] found that the efficiency
of their methods for solving systems of nonlinear equations on distributed memory
multiprocessors depended very much on the efficiency of the linear algebra subrou-
tines available for these machines. As a consequence, they devoted a great deal of
their initial research effort to developing an efficient parallel triangular solver for a
distributed memory multiprocessor (20], [21].



Second, since function evaluations constitute a significant portion of the cost ia
numerical optimization, one clear way to exploit parallel machines is to have djferent
processors compute function values concurrently. Schnabel [31] suggested that when
the evaluation of the function is expensive and the gradient is calculated by 3nite
differences, then there are simpie approaches to deveioping parallel unconstrained
optimization algorithms. I[n this setting, a natural way to use parallel machignes is
to compute, in parallel. the n function evaluations required for the finite difference
approximation to the gradient. This observation forms the basis for the subsequeat
work by Byrd, Schnabel and Shultz. (8] and [9], on parallel quasi-Newton methods
for unconstrained optimization.

The key feature of the parallel algorithm we have developed is that it introduces a
multi-directional search into the decision-making framework of the sequential Neider-
Mead simplex algorithm. Rather than using O(n) function evaluations to construct
a finite difference approximation to the gradient for a single, albeit sophisticated,
direction of search. why not use O(n) function evaluations to search in n distinct di-
rections? An examination of both the Nelder-Mead simplex algorithm and the pattern
search algorithm of Hooke and Jeeves suggested a reasonable way to coordinate such
a search. In addition, this approach did not require the solution of any linear svstems
of equations, which meant that there was no need to devote attention to parallel aigo-
rithms for numerical linear algebra. An additional feature of this approach, revealed
by the convergence analysis, is that the multi-directional search algorithm contains a
natural strategy for attacking the load balancing problem that has plagued much of
the work being done to “parallelize” more conventional optimization methods.

Furthermore, we wished both to preservé the features of the.direct search methods
which make them so popular in certain circles, and to address the concerns raised
by those who question the continued use of direct search methods. Thus we wanted
an algorithm that did not require derivative information but was still robust. We
wanted an algorithm that worked well in situations where the function values were
noisy and yet was easy to understand and thus easy to implement. We also wanted an
algorithm that could handle more than ten variables effectively. Finally, we wanted
an algorithm that was backed by a convergence theory.

The result of our investigations is a multi-directional search algorithm which is a
new direct search method that can be easily implemented on parallel machines — it
is not a parallel implementation of an existing sequential direct search algorithm. In
addition, we have developed a convergence theory for this algorithm that we believe



can be extended to severa] of the original direct search algorithms for which we k-
of no prior convergence results. Finally, we have evidence to suggest that the m:
directional search algorithm also preserv

es many of the performance features tha we
were interested in maintaining.

1.2 Choice of search direction and step length

The multi-directional search algorithm could be co
uses a line search as a globalization strate
will become apparent in Chapter

nsidered a descent methog that
gy. This characterization of the algorithm
3 when we discuss the convergence analysis for the

multi-directional search aigorithm. Given this characterization of the algorithm, there
are two issues which must be addressed:

® The algorithm must include a method for choosing a search direction that will

guarantee a decrease in the function value, at the current iterate, for a step of
the appropriate length.

o The algorithm must include a method for finding the appropriate step length.

The archetype of descent methods, the method of steepest descent, uses the gra-
dient to resolve both of these issues. If the given point is not a local minirmnizer, the
negative gradient provides a search direction for which descent is guaranteed if the
step taken in that direction is sufficiently small. In addition, the gradient describes
the rate of change of the function from the given point, which al

lows for a quantitative
notion of “sufficient decrease” to prevent steps that are either

too long or too short.
In the first case, the average rate of decrease in the function value from the current

iterate to the next iterate must be at least some prescribed fraction of the initial rate
of decrease in that direction. In the second case, the rate of decrease of the function f
in the search direction at the new iterate must be larger than some prescribed fraction
of the rate of decrease in the search direction at the the current iterate. These two
requirements for sufficient decrease are known as the Armijo-Goldstein conditions.

More sophisticated line search algorithms incorporate curvature information (sec-
ond derivatives) to help determine a search direction which should produce a decrease
in the function value at the pext iterate. The procedure for choosing the length of
the step may or may not make fu- -her use of the Hessian, but the gradient is still
needed to enforce the notion of su:-cient decrease.



(&1}

Having relinquished derivative information for practical comsiderations. :h
tion now becomes: How do we find both a descent direction and a step of the ap-
propriate length? To determine the search direction, some direct search o

e ques-

ethods
consider a natural alternative: at every iteration they explore each direction in 2 set

of n linearly independent search directions, where n is the dimension of the domain.
If the function is differentiable. then at least one of these directions is not orthogonal
to the gradient and therefore determines a descent direction. Again, if a step taken
in this direction is small enough. descent is guaranteed. This observation suggests a
natural way to develop algorithms that search multiple directions concurrently. Less
clear is how to determine a step of the appropriate length. The direct search simplex
methods. first introduced by Spendley, Hext and Himsworth (32] and then modified
by Nelder and Mead {24], provide a simple mechanism to determine the size of the
step to be taken. A judicious use of these two ideas introduces enough structure to
derive a convergence proof for the resulting algorithm.



Chapter 2

Algorithm

2.1 A description of the multi-directional search algorithm

At any iteration k. where £ 2 0, the multi-directional search al

sints, vf,...,v% which define a nondegenerate simplex in

¥e mean that the set of n edges adjacent to any given vert

gorithm requires n = |
IR". By nondegenerate

ex in the simplex spans
[R". In Figure 2.1 this is the triangle formed by the vertices < v§, vk, v* >. The edges

of the simplex are used to define the search directions, the orientation of the search
directions, and the step size in each direction.

We begin by computing the function values at all n + 1 vertices in the original
simplex. Using this function information, the algorithm distinguishes the “best”
vertex in the simplex. where the “best” vertex is defined to be the vertex having the
smallest function value. We follow the convention that v§ denotes the best vertex at
the current iteration k. We then have a best vertex, v, which satisfies:

flvg) < f(v¥) for i=1,...,n.

The n edges connecting the best vertex to the remaining n vertices determine a

set of n linearly independent search directjons. In Figure 2.1 these would be the edges
vgvf and vgus.

2.1.1 The reflection step

The algorithm now takes a step from the best vertex, v¥, in each of these n directions.
The length of each step is equal to the length of the edge that determined the search
direction. Geometrically, this could be viewed as “reflecting” the original simplex
through the best vertex to give a new simplex. The result, as can be seen in Figure 2.1,
is a trial simplex, < v%, vf,vh >, that shares only the best vertex, vg, with the original
simplex, < v§,v¥, v >. The angles in the trial simplex, and the lengths of all the
edges, are the same as those in the original simplex.



Figure 2.1 The original simplex and its reflection



N

L _
The step is deemed successful if it satisfies the following simpie acceptance tes::
Does one of the pew vertices have a function value that jg better than the func- ™
tion value at the best vertex ip the original simplex? Specifically, can the following
condition be satisfied: -
rm'n{f(uf‘). i=1,...,n} < f(vg)? (2.1)
-
The reason for this acceptance test is straightforward. We would like the reflected
simplex to produce a new best vertex: i.e., a vertex with a function value that is less
than the function value at the current best vertex, v¥. As can be seen in Figure 2.1,
if the best vertex is not replaced. then at the next iteration the pew vertices, v}
and v}, will be reflected through the same best vertex, v§, to restore the original we
simplex, < v, v, vf >. C hecking the acceptance criterion requires the calculation of
the function values at the n new vertices, vfl, ... ,vfﬂ. (Note that there are no data -
dependencies, so these function values are easily computed in parallel.) Now there
are two possibilities: The acceptance test for the reflection step either is or is not
satisfied. In either case we will consider a new trial simplex, as described in the next ™
two sections. ~
-
2.1.2 The expansion step
Suppose that one of the pew vertices does satisfy the acceptance criterion stated in o
(2.1). The logical question is then whether or not further improvemnents could be
found by considering an even longer step size. To answer this question, the algorithm
again takes a step from the best vertex, v§, in each of the original n search direc.
tions, but now each step is twice as long. Geometrically, as shown in F igure 2.2, the
algorithm “expands” the tria] simplex by doubling the length of every edge in the ==
reflected simplex to give the new trial simplex < vg,v¥,v% >. Note that while the
angles in the new trial simplex are still the same as the angles in the original simplex, -
the lengths of all the edges have been rescaled by a factor of two. )
Acceptance of the expanded simplex is based on the reasoning that it is not
necessary to double the step length unless such a step improves on the decrease seen ™
in the function values found with the original step length. This leads to the following
acceptance condition for the expansion step: -
. £y - . kY
mm{f(ve‘), i = l,...,n} < m.xn{f(v,l.), 1= 1,...,n} . (2.2) g
[ _J



k
Uey

Figur'e. 2.2 The original simplex with the
reflected simplex and its expansion



0

When the expanded simplex is accepted, the next iteration begins with the simpiex
< v, v, ... v% >, Otherwise. we nmote that we only considered the expansiog step
after we had verified that the reflected simplex satisfied the acceptance conditiog
(2.1). Thus, when we consider but do not accept the expanded simplex we simply

begin the next iteration with the reflected simplex < vé‘,v,’.‘l, o uE s,

2.1.3 The contraction step

If none of the new vertices in the reflected simplex satisfies the acceptance criterion
given in (2.1), the logical question now becomes: Were the steps we considered too
long? A natural response to this question is to restart the search with shorter step
sizes. Towards this end, the algorithm halves the lengths of the steps that can be
taken. Geometrically, as can be seen in Figure 2.3, the algorithm simply “contracts”
the original simplex towards the best vertex. v¥, by halving every edge in the sim-
plex. The algorithm will then start the next iteration with the contracted simplex
<vg, v,k s,

Before proceeding to the next iteration. though, we check to see whether or oot

one of the n new vertices in the contracted simplex will satisfy the simple decrease
condition:

min { f(v%), i=1l...,n} < f(ub). (2.3)

We would still like to find a new best vertex. We compute the function values at the
vertices in the contracted simplex, and thea check our simple decrease condition. If
condition (2.3) is satisfied, the algorithm starts the next iteration with a new best
vertex. If not, at the next iteration the algorithm will again be searching from the
same best vertex, v&, in each of the same n directions considered in the previous
iteration. Now, however, the length of each step has been halved. In either case, if
the contracted simplex is constructed, it is the simplex used to start the next iteration.

2.2 New search directions and new step lengths

The goal of the multi-directional search algorithm is to construct a sequence of best
vertices, {v5}, that converges to a critical point — ideally a minimizer — of the
function. For this reason we require that the sequence of function values at the best
vertex, { f (vc’,')}, be monotonically decreasing. Thus, we only accept a new best vertex
if it satisfies the simple decrease condition, as specified.in (2.1), (2.2), and (2.3).



<
O

Figure 2.3 The original simplex and its contraction



kw1

Figure 2.4 The next iteration — with new search directions

-

9



k+1
v

Figure 2.5 The next iteration — with new step sizes



—
-

There are Practical reasons for wishing to replace the best vertex. The choice of
a best vertex determines the choice of search directions since th
are defined by the n edges adjacent to the best vertex. As we h
it is imperative that we not accept the reflected simplex unless
best vertex or else we are doomed to flip back and forth betweeg t
and its reflection. If we do accept either the reflected or expanded simplex. however.,

We are guaranteed to begin the next iteration with a new best vertex and n — | new
search directions, as can be seeq in Figure
from the previous iteration —

e search directiogs
ave already noteq.
We can replace the

he originaj simplex

2.4. Note that we retain ope direction
the direction which gave us our new best vertex. This
means that we do not discard a direction along which we have seen descent until we
have seen further descent in another direction. This is particularly satisfying when we
accept the expanded simplex because we have seen significant decrease in one of the
directions. Then. even though we do not continue to search along that direction in
the current iteration. we do include that direction in our search at the next iteration.

If we do not replace the best vertex, and thus do not replace the set of search
directions, we trv a different strategy: We change the size of the step we take. F irst,
we halve the size of the current simplex: this has the effect of halving the size of the
reflection simplex in the next iteration. The result can be seen in Figure 2.5. This
process of halving the step sizes continues unti] the simple decrease condition, either
(2.1) or (2.3), has been satisfied.

Having made these observations, we are now ready to give a formal statement of
the algorithm.



r~
Qe

2.3 The multi-directional search algorithm

Given an initial simplex, Sy, with vertices < vg, v],oo vl >, p € (1, +a¢). and
6 € (0,1).

min « arg, min {f(v?), i =0..... n}

swap v, and v

for k=0,1,...

Check the stopping criterion.

fori=1,...,n
vitl— 2pF — yF
calculate f(v *!)

if (min {f(vf), i = L....n} < f(v§)) then
fori=1,....n

ve, — (L= p)vg = puf™!

/* reflection step

/™ expansion step

calculate f(vf) fori=1....,n
if (min {f(v¥), i = L....n} < min { f(vf*), i=1,...,n})
viTl — v‘ fori=1....,n
else
for:=1...., n /™ contraction step
efTl— (1 +06) vE = o+t
calculate f(vf*Y) fori=1,...,n
endif
min — arg, min {f(vf“), i=1,... ,n}

if (f(vhin) < f(vh)) swap vhtl and uj

Note that in the description of the algorithm we assumed that the contraction
factor, 6, was equal to one half, while the expansion factor, 4, was equal to two. The
choice of 4 and 4, as well as such issues as producing an initial simplex and deciding
when to stop the algorithm, will be discussed in Chapter 4.

2.4 Discussion

By allowing the simplex to expand and contract, the algorithm allows for both longer
and shorter steps. Note, however, that the actual step size depends on the choice of the
initial simplex since the lengths of the edges in the initial simplex determine relative



16

step lengths of size one, while the scaling factors for the expansion and contrac
fixed across all iterations. The edges in the initial simplex also determine a f§
of fixed search directions that are maintained across all iterati
of the procedure depends. to a large extent, on the choice of

There are still two questions that we need to answer. Are these step sizes flexiple
enough to allow us to satisfy the strict decrease requirement enforced by the

tion are
nite set
ons. Thus, the progress
the initial simplex.

accep-
tance criterion given in (2.1)? The answer is “yes.” If the function is differentiabie.

and the best vertex is not at a critical point of th

e function, repeatedly contracting
the simplex will lead.

in a finite number of iterations, to a simplex that satisfies the
acceptance criterion. Will this process converge to a solution? The answer is again
“yes,” as will be discussed in the next chapter.

bed



Chapter 3

Convergence

3.1 The convergence theorem

Before proceeding to a formal statement of the theorem, let us first set the stage.
We begin by restricting our attention to the sequence {vé‘}, which is the sequence

of best vertices generated by the multi-directional search algorithm. Recall that at
every iteration k, v§ is chosen to be a vertex for which

f(v§) < F¥) for i=1,... n.

We will define the level set of f at vg, where vJ is the best vertex of the initial
simplex, to be

L(w) = {z:f(2) < f(x)} .
Given y € [R", we define the contour C(y) to be

Clyl = {z:f(z) = f(y)} .

We require that the function f be continuously differentiable, even though the
algorithm does not explicitly compute derivatives. Having made this assumption we
then define X. to be the set of stationary points of the function fin L(vd):

X. = {zeL(®):Vf(z)= 0} .
Finally, we require that the expansion and contraction factors, x4 and 4, be rational.

We are now ready for a formal statement of the theorem and its corollary.

Theorem 3.1 Suppose that (1) f is continuously differentiable, and
(2) L(vQ) is compact. Then some subsequence of {v{,‘} converges to a

point z. € X.. Furthermore, {vc’,‘} converges to C., where C. = C(z.), in
the sense that

lim [ inf

k—=c0 z€C.

k_ ,.!l =
lvo z! 0.

17



(¥ 9)

Corollary 3.1 Suppose that (1) fis continuously differentiaple. (2) L(

9
Q0
13 compact. and (3) f is strictly convex on L{v]). Then

W\
Vg

lim vy = =z..
& =0

where z. is the unique minimizer of fon L(v))

A formal proof of Theorem 3.1 is given in Section 3.3. The next sect

ion will bujid
the machinery Decessary to establish the convergence result.

3.2 Descent methods

The most natural strategy for any minimization algorithm is to ensure that each
step accepted by the algorithm decreases the value of the function f; i.e., at every
iteration &, we require that the algorithm produce an iterate z*+! such that

fz*) < f(z4). (3.1)

Methods which satisfy this condition are called descent methods. Much of the conver-
gence analysis to be found in the standard optimization literature is built around this
simple requirement. The method of steepest descent, as first defined by Cauchy, is
the archetypal descent method — as its very name would suggest. Newton's method,
without modification, is not a descent method: however, considerable effort has been
devoted to developing modifications of Newton's method so as to guarantee that con-
dition (3.1) is satisfied. Not too surprisingly, then, there exists a rich understanding
of descent methods and the conditions under which they are guaranteed to converge
to a stationary point of a function. For a further discussion of descent methods,
see, for example, either Dennis and Schnabel (14], Gill, Murray, and Wright [16], or
Ortega and Rheinboldt (25].

Our analysis of the convergence properties of the multi-directional search algo-
rithm begins with the observation that the algorithm is, in fact, a descent method.
This is not immediately obvious given the above definition of a descent method.
However, if we restrict our attention to the sequence of best vertices we can show

that if v¥ is not a stationary point of f, then there exists a strictly positive integer py,
which depends on k, such that

f(we™) < f(vd). (3.2)



9

We revise the original definition of a descent method to accommodate the fac:
that the multi-directional search algorithm does not produce a new best versex at

every iteration. Instead. we note that since the best vertex is not repiaced unti] we
find a vertex which produces decrease on the function value at the best vertex. we

are guaranteed that after every iteration, either
fleg™) < flvg) or  wgtt = uf.

In the first case, we have a new best vertex. In the second case, we simply start the
next iteration with the same best vertex, but smaller step sizes. The question now
becomes: Can the multi-directional search algorithm produce a new best vertex in
a finite number of iterations? To verify this condition we consider each of the three

possible steps the aigorithm can take: the reflection step, the expansion step, and the
contraction step.

3.2.1 Guaranteeing strict decrease

To accept the reflection step, the multi-directional search algorithm requires that

the reflected simplex produce at least one vertex which satisfies the simple decrease
condition

Flof) < Fud). (3.3)

If the reflected simplex is accepted, then at the next iteration vf will become the new
best vertex, i.e.,

vErl v:
and so
flus*') < f(vg). (3.4)

Thus we satisfy our strict decrease condition (3.2) with px = 1.

We do not even consider the expansion step unless we have already found a vertex
in the reflected simplex for which the simple decrease condition (3.3) is satisfied. The
acceptance test for the expansion step is even more rigorous: we only accept the
expanded simplex if one of its vertices produces even further decrease in the function
value. So again, we have guaranteed that the strict decrease condition (3.2) has been
satisfied with py = 1.



20

The contraction step is the most interesting case. Recall that the algorithm only
considers the contracteq simplex after the reflected simplex has been rejecied because
it did not produce a vertex that satisfied our simple decrease criterion (3.3). We
compute the function values at each of the mew vertices

and check to see if we have indeed found a vertex, v
decrease condition

in the contracted simplex
%, which satis impl
o satisnes the simple

. . _

fei) < flyg). (3.3)

If so, we start the next iteration with a new best vertex, since we make the replacement
vetl — ve .

But if we do not satisfy the simple decrease condition (3.3), then we start the next
iteration with the current best vertex; i.e.,

k

k1
Uq - .

The question is this: If we repeatedly contract the simplex, will we eventually
produce a new best vertex — one which satisfles condition (3.2)? The answer is “ves”
— if we assume that the function is differentiable and that v§ is not a stationary point.

Note that by definition the n edges adjacent to vs form a set that is linearly
independent. We assume that v& is not a stationary point. Then, since the set of
edges spans [R", we are guaranteed at least one vk for i = 1,...,n, such that the
edge W is not orthogonal to the gradient of f at vf. Then either this edge, or its
reflection, determines a direction of descent. Recall that if the current best vertex is
not replaced by one of the vertices in the contracted simplex, then v§*! — v* and
Thad vi,fori=1,...,n, as we first observed in Figure 2.5. This means that at
the next iteration we will be searching along the same set of search directions. But
then v**! will be contained in the edge W, as can be seen in Figure 3.1. Thus
We are guaranteed to have at least one direction which produces descent since the
algorithm searches back and forth along both the edge W, in the original simplex,
and its corresponding edge, W, in the reflected simplex.

Since we are guaranteed that at least one of the n edges adjacent to the best
vertex identifies a direction of descent, we need only show that the algorithm finds a

step, in a finite number of iterations, which produces decrease in the function value

at the best vertex. To see that this happens, we simply note that we are generating



o
y—

Figure 3.1 The two cases which guarantee a direction of descent

two sequences, the contracted vertices {v*} and the reflected vertices {v¥}, both of
which are converging to v§. If v is not a stationary point, the differentiability of
f then ensures that one of these two sequences will produce a new best vertex in a
finite number of iterations. Hence. we can guarantee that condition (3.2) is satisfied:

there exists a subsequence of { f( vg)} which is strictly decreasing. This argument is
formalized in Lemma 3.1.

Lemma 3.1 Suppose that (1) f is differentiadle and (2) v& is not a
stationary point. Then there exists a strictly positive integer px, whica
depends on k, such that

flog™) < f(vd).
This means that the sequence {v{,‘ } has a subsequence {vg’} such that for
all 5 .

flus™) < flug').

Proof By definition, the set of edges adjacent to any vertex in a simplex is linearly
independent. Thus, the set of n edges adjacent to current best vertex, by which we
really mean the set of vectors

{(v!’—v:) 1= 1,...,n},

spans [R".
By assumption, f is differentiable and v¥ is not a stationary point. Thus, we can
conclude that there exists at least one i, for i = 1,...,n, such that

Vf(vg)T(vf —vg) # 0.



There are then two Cases to consider:

o Case 1: Vf(u5)T(vF - ) >0

o Case 2: Vf(vé‘)r(vf‘ -vf) <o.

Case 1: Vf(v¥)T(v* _ v) >0

V f(vg)

Figure 3.2 Case 1 V()T (vE = v¥) > 0

kL k_ o6y _ frok
Vf(vc',‘)r(vf' - vg) = }‘lm f (Uo - h(UP; Vg ) f(vo) ‘
Since V f(ug)T (v5 - v¥) < 0 then
S (v + Aok = o)) = o)
lim

<
A=Q h
Thus, there exists an A > 0 such that

fug+h(ok =vd) < floby.
Case 2: Vf(v§)T(vF - vé) <0

Since f is differentiable, we consider the dir

ectional derivative of f at v in the
direction (v¥ — vf):

LBk — ok _ frok
Vi) (vf-vh) = ;I.ij:.'i,f(vo+ (v; - vo)) f(”o).



Figure 3.3 Case 2: Vf(v§)T(vF -vf) <0

Since V f(vé)T (v* - vf) < 0 then

limf(vé-é-h(v?—v"))—f(vé‘) <o
h=Q h

Thus, there exists an A > 0 such that

fos+h(uF=ud) < flud).

To see that the algorithm produces a point v§ +h(ve—vE), v € v§vf, such that
flos+hlue-vd) < fud),

consider the following: if a satisfactory step is not found, then the simplex contracts.

So, fori =1,...,n, v — vX. The vertices of the contracted simplex are defined to
be

v, = v:+0(vf‘-v§),

fori=1,...,n, where 8 € (0,1) is the fixed contraction factor. This means that the
sequence {v,"} is converging toward v} with constant 4. It then follows that there

exists a px such that 6°* < h. Therefore, for any k, there exists a positive integer pg,
such that

flus™) < f(vg).

Lemma 3.1 leads us to Lemma 3.2.



Lemma 3.2 Suppose that (1) f is differentiable. and (2) L(v)
pact. Then there is some f such that

lm f(wg) = f.

Is com-

Furthermore. {vg } has at least one limit point #, and

. . £ | —
s [:elg{:’) “v° - Id] =0
Proof The proof of the first statement follows directly from Lemma 3.1: f exists

because { f (vc’,‘)} is a monotone non-increasing sequence which is bounded below.

To prove the second statement we consider the following: Since L(v)) is compact,
{ ve } contains a convergent subsequence. We will denote this convergent subsequence
as {vc‘,"'} and say that vy — 2, By continuity, f(£) = lim_, flvé) = f.

Define

S = :Eig(fé) "vg - :” )

Note that since L(v) is compact, d; is bounded; i.e., there exists a B 2 0 such that
0 < éx < B. But limy_, §, = 0, which implies that

li/fn infé, = 0.

Next, suppose that {4y} is any (infinite) convergent subsequence of {8x}. There
is a corresponding sequence of {v:‘}; this sequence of best vertices has a convergent
subéequence which we denote also by {vé‘} — . Again, f(2) = limi—o f(v&) = §,
so £ € C(z). Thus, 6, — 0. Hence, the only possible accumulation points of {8x}
are 0 or co. But, §* < B, so

limsupde = 0.
k=—co
Since liminfy oo &k = lim SUPy_o, 6k = 0, we have limi—o, §i = 0 as required.

a

We have now established that the multi-directional search algorithm is a descent
method with a strictly monotonically decreasing subsequence of the function values
at the best vertices, that the sequence of function values converges, and that the
sequence of best vertices converge to the corresponding level set.



3.2.2 Safeguarding the search directions

While the algorithm does generate at least one direction which produces descent.
we still need to guarantee that the sequence of search directions does not become
arbitrarily bad: i.e.. that the sequence of search directions does not become arditrarily
close to being ornhogonal to the gradient. To ensure this, it is enough to show that

the search directions p* are umforrn.lv bounded away from becoming orthogonaj to
the gradient of f at the iterate z*

IVf(z:.)Tp"] .
VPO = 7 (36)
where v is a strictly positive constant independent of k.

The multi-directional search algorithm gives us this condition for free. Since the
simplex never changes its original shape, we are guaranteed that at least one search
direction (edge) satisfies (3.6) at each iteration. To see this, we note that because
the simplex never changes its original shape, the set of edges adjacent to the best
vertex v§ remains uniformly linearly independent. This means that at each step &
there exists a constant ¥ > 0 which does not depend on k, such that

T(pk _ ph
ma.x{lr (‘°k L')',i:l,...,n} > 4 (3.7)

Izl flvg — vl

forallz € [R", £ #0. Thus, if f is differentiable, at every iteration the angle between

the gradient of f at v§ and at least one search direction is uniformly bounded away
from 90°.

3.2.3 Enforcing step length control

We have shown that the multi-directional search algorithm generates at least one
direction of descent that is uniformly bounded away from becoming orthogonal to the
gradient, but we still need to ensure that the steps the algorithm takes are neither too
long nor too short. In most other descent methods, step length control is guaranteed
by enforcing the Armijo-Goldstein-Wolfe conditions. To prevent steps that are too
long, the Armijo-Goldstein-Wolfe conditions require the average rate of decrease in the
function value from the current iterate to the next iterate be at least some prescribed

fraction of the initial rate of decrease in that direction. Thus, the so called “alpha”
condition is enforced:

f(z"*) < f(2*) + eV f(H)T (& - 2h), (3.8)



26

with a € (0,1). To prevent steps that are too short, the Armijo-Goldstein- Wolfe
conditions require the rate of decrease of the function f in the search dire
the new iterate be larger than some prescribed fraction of the rate of decrease in the
search direction at the current iterate. This leads to the “beta” condition:

cllon at

vf(x,'e-hl)T(I’t-Pl - I") Z BVf(zk)T(Ik.H' - zk), L39)

with 3 € (a,1). For a further discussion of the Armijo-Goldstein-Wolfe conditions.
see, for example, either Dennis and Schnabel (14], Gill, Murray, and Wright [16), or
Ortega and Rheinboldt [25).

The multi-directional search algorithm cannot explicitly enforce the Armijo-
Goldstein-V ‘e conditions because it does not have explicit knowledge of the gra-
dient. How- :r, there is enough structure in the algorithm to enforce step length
control without enforcing the Armijo-Goldstein- Wolfe conditions.

The crux of the proof of Theorem 3.1 lies in showing that if we suppose that
no limit point of {vé‘} is a stationary point, then all but finitely many {vg} are
points where V f(v%) must be bounded away from zero, independently of k. We will
show that then the algorithm generates a finite number of points, which contradicts
Lemma 3.1. It is this argument which is both the most interesting, and the most
illuminating, part of the proof.

We begin by proving the existence of an upper bound on the lengths of the edges
of the simplex.

Claim 3.1 Suppose that (1) f is differentiable and (2) L(v]) is compact.
Then there exists a constant M > 0 such that

"v{' - v{,‘" < M Vik.
Proof Recall that L(v) is defined to be
L) = {z:f(z) < f:)}.

Assume that vJ is not a stationary point. If so, Lemma 3.1 guarantees that the
multi-directional search algorithm will produce a new best vertex in a finite number
of iterations. We will denote by k, the iteration which first produced a new best
vertex. We have also assumed that L(vd) is compact. Thus, for all £ > ky, there
exists at least one vertex v* such that the vertices v, v¥ € L(v). Since L(vd) is



bounded, this implies a bound on the length of the edge L‘ *. Since the rescaiing
factors are constant across ail edges for all iterations. the relame lengths of ail edges

in the simplex remain the same across all iterations of the algorithm. This im
the existence of M > 0 as required.

plies

If ug is a stationary point. then we cannot apply Lemma 3.1. Thus we cannot
guarantee that in a finite number of iterations we will find a new best vertex. There
are then two possibilities: The first possibility is that the multi-directional search
algorithm does produce a new best vertex — consider, for instance, the case where
v is at a local maximizer. If so, the argument given above still holds. The other
possibility is that the multi-directional search does not find a new best vertex, i.e..
v§ = vg for every k. If so. then only the contraction step has been taken because the
reflection step and the expansion step are accepted only when they do produce a new
best vertex. Since the contraction factor 6 is strictly less than one, this means that
the length of every edge of the simplex is strictly monotonically decreasing. Thus,
the maximum length across all edges in the initial simplex provides an upper bound
on the length of all edges in all subsequent simplices, as required.

—
—

The existence of an upper bound on the lengths of the edges of the simplex implies
the existence of a compact set. which we will call M, that contains L(v3) and all the
simplices generated by the multi-directional search algorithm.

Next we will show that if the sequence of best vertices stays bounded away from
stationary points, then there.is a lower bound on the lengths of the edges in the
simplices the algorithm generates. To show that under the above hypothesis a lower
bound on the lengths of the edges in the sxmplex does exist, we will show that once
the edges in the simplex become small enough, the reflection step will always be
acceptable. In that case, while the expansion step will be considered, the contraction
step will not. Since the lengths of the edges in the simplex are reduced only when

the simplex is contracted, this argument ensures no further reduction in the size of
the simplex.

Claim 3.2 Suppose (1) f is continuously differentiable and (2) L(v]) is
compact. Assume that for all & > kg there exists a constant ¢ > 0, which
does not depend on k, such that

|[vred)| = o



Then there exists 2 constant m > 0 such that

m < ”vf—vc’,‘" Vik.

Proof Let.U be the compact set of Claim 3.1. By hypothesis, Vf(z)is a continy-

ous function on the compact set .M. This means that Vf(z) is uniformly continuoys
on M.

The uniform linear independence of the set of search directions at each iteration
gives us the constant v > 0, while the hypothesis that the gradient is bounded away
from zero gives us the constant ¢ > 0. By the uniform continuity of ¥ f(=) there
exists a § > 0, depending only on ¢ and 7, such that for all &,

“Vf(::)—Vf(vé‘)” < 0v/2 whenever "z—vé'" < 4.

Now we will show that if at any iteration k we choose a vertex vk, { % 0, which
satisfies

|V F(w§) (v = vb)|
[V 78] o - o

then once the edges of the simplex become “small enough” the simplex will not
contract, so it cannot get any smaller.

-~
i

Again, we have two cases to consider:
o Case 1: Vf(vl)T(vF-vk)>0 [See Figure 3.2,
o Case 2: Vf(v§)T (v —vf) <0 " [See Figure 3.3.]
Case 1: Vf(v§)T(vF -vE)>0
By definition

vt o= v+ (vE-vF)  so vE—vf = —(vk - vd).

We invoke the Mean Value Theorem to get
f(v7) = f(vg) = VFET(vE —vf)

where £ € vgv¥.



[3¥]
W

Add and subtract Vf(e§)T(vE - vg) to obtain:
flur) = f(vg) = Vf(uh)T(vk —uvd)
+ (Vi )-W(vé))T(v: — u}). (3.10)

Consider the first term on the right hand side of (3.10), ¥ f(v&)T(v* vl = uf). We
chose v so that

or
CAT =) 2 v |V ok - ]
Since V f(v§)T (vF — vf) > 0 we then have

V) (v =vg) 2 7|V A(wd)

et

By construction. “vf - LOII =

Vf<v:)’(n* -vg) 2 ]

v _v°"

Since vf — v§ = —(vE — vf), we get

V) vy, —vg) < -7 |V £(vg)

v.-vou ' (3.11)

Now, consider the second term on the right hand side of (3.10). The Cauchy-
Schwartz inequality gives us:

(V56 = v £8) T (=] < |V 500 -

vh-vi|. (.12
We combine (3.11) and (3.12) to rewrite (3.10) as

flor) = () < —v ||w (v8)

=V II + llvf Vf(v

ot -

Observe that since Vf is umformly continuous, there exists a § > 0, depending only
on ¢ and «, such that for all &

|[Vf(z) = V@) < ov/2 whenever |=-] < s.



We then have

fler) = F(2) < (=] £ vo.lw-,Iva )=

>a <§2
<-F<o
<0

Thus,

flor) = f(v)) < 0 = f(v n) < flud),

whenever' ”f

Conclusion: v* is acceptable

Remark

We can actually say more. We have shown that

Flor) = £ef) < =ZL [l = of]

or
flor) < flof) - 2 5] -
Recall we have assumed that for all &
|v £
so that
f0r) < £led) = 2 [V £l ok - w2

Again, we call upon the Cauchy-Schwartz inequality to obtain

|V £ ()T (v} -v)| < HVf(vg)" "v - o4

- v ,', < 4. Therefore. the simplex will not contract.

30

(3.13)



so that
-3 VAERTEE - )| 2 =3I ok - v, (3.14)
Substituting (3.14) into (3.13) gives us
Fisl) < ) = 3 [VAHTE = ). (3.15)
However, we have assumed VF(e5)T(vE - v§) <0, s0
=3 ITAEOTL - o) = IV ATl - o). (3.16)
Substituting (3.16) into (3.13) we then have
F0R) < (o) + 2 VF(ub)T(v* = ub). (3.17)

In other words, when the lengths of the edges in the simplex become “small
enough,” we are guaranteed a uniform fraction of Cauchy decrease — a fraction that
depends on v, which is the constant from the uniform linear independence condition.
Thus, when the lengths of the edges in the simplex become “small enough,” (3.17)
shows that we satisfy the alpha condition of Armijo-Goldstein-Wolfe for Case 1.

One point worth noting is that we are only guaranteed to satisfy the alpha condi-
tion when ||V f(v§)|| > o and the simplex becomes “small enough.” In general, whiie
we are guaranteed simple decrease, there is no guarantee that the alpha condition is.
in fact, satisfied. In some iterations, we may do substantially better; in others we
may oot do as well. Rather, this observation suggests that in the “worst” case we
will at least see a uniform fraction of Cauchy decrease.

Case 2: Vf(v&)T(vF=vk) <0

Our argument for Case 2 follows that for Case 1, but leads to a very different conclu-
sion.

We again invoke the Mean Value Theorem to obtain
f(of) = flvg) = VFET(vF - vg)
where § € u§vs. We add and subtract V f(vf)T(v* - v¥) to obtain

f(o5) = f(vg) = Vf(ud)T(vf=vf) ]
+ (V&) = Vf(u8)) (vF —vl). (3.18)



32

Consider the first term on the right hand side of {3.13), Vf(vé)r(vf -0

5). We
chose v¥ so that

)T (vt = u3)|

v - v

|V flvd
| v
Thus,

STl =] > 4 [V £ Jok = wd].
However, we know that V f(vg)T(vE - vf) < 0, so that
)l = v) < v |9 f(ug)] ok - wi]. (3.19)

Now, consider the second term on the right hand side of (3.18). The Cauchy-
Schwartz inequality gives us

(V&) = VFi)T (ol - v8)] < [vi©) - veeh|or-o4]. (320
We combine (3.19) and (3.20) to rewrite (3.18) as

O =108) < =178 o = wd] + |£(6) = 9 )] o = o8]

i .
Now observe that since ¥ f is uniformly continuous, there exists a § > 0, depending
only on ¢ and v, such that for all &

”Vf(z)—Vf(vé‘)" < ov/2 ;vhenever H:-vg" < 6.
We then have

f) = f05) < (=1 ]9568)] + [V r6) - V1)) Jot =]

2 < ’T >0
N—— e
S=o~

N —

<-F<0

—

<0

Thus

flol) = f(v§) < 0 = f(v}) < f(ub).
whenever ”E - v(‘,‘" <é.
But this leads to a contradiction! We have chosen vf so that i # 0 and the
algorithm requires that

flv§) < fvh) YVi=1,...,n.



C.
.

Conclusion: Case 2 cannot happen.

We have now shown that if ”5 - vé” < § then for Case 1 the algorithm will accept

the reflection step and the simplex will not contract and Case 2 cannot occur. Iz
Case 1,

§ € vuf

while in Case 2

£ € vivE,
By construction, |[v¥ — vé‘“ = “v," - vé‘”, so that
&l k k
&=l < ot - 3]

This implies the existence of a constant m > 0 such that
m < ”v"‘ -vé‘{l Vik,
if for all k there exists a constant ¢ > 0, which does not depend on k, such that
[Sr] 2 o

c

Now that we have established lower and upper bounds for the lengths of the edges
in the simplex, we are ready to show that given these lower and upper bounds, the
multi-directional search algorithm can only visit a finite number of points.

To see how this argument works, we begin by considering how the algorithm
decides which points to visit. In Figure 3.4 we assume that we are given an initial
simplex and that we know which vertex in that simplex is “best.” The algorithm
automatically visits the reflected simplex. The result of the acceptance test then
dictates whether the expanded or the contracted simplex will be visited. In any
event, given an initial simplex, and the best vertex in that simplex, we can list, in
advance, all the simplices that can be generated at the current iteration. This means



Ca

-

W€ can enumerate. q priori. ail che points that can possibly be visited during the
current iteration.

Now assume that we are givex an initial simplex. but do not know any informat
about the function vajyes at any of the vertices in the simplex. This
have no way of identifying the -best” vertex in the simplex. Even without thig
information, we can still list al] the simplices that might be generated at the current
iteration and we can stij] enumerate all the points that might be visited during the
iteration. To do this. we simply consider the possibilities when each of the vertices
in the original simplex is allowed to be “best,” as shown in Figure 3.5.

We now extend this speculation to the next iteration. Again, we assume no
knowledge of the function valye at any of the vertices. We allow each vertex in
each of the trial simplices generated at the previous iteration to be “best.” For our
example, seen in Figure 3.6. we do begin to enforce a lower bound on the lengths
of the edges in any of the simplices. Furthermore we require our simplices to be
contained in a compact set. Both of these restrictions are important because they
eliminate several of the simplices that might otherwise have been considered.

Consider vet another iteration. Again we allow each vertex in each of the trial
simplices generated at the previous iteration to be “best.” but again we apply our

restrictions to eliminate even more possible simplices. The result can be seen in
Figure 3.7.

ion
Teans that we

Finally, if we remove al] the edges, we see in F igure 3.8 that the method Is, in
fact, generating a grid. Since this grid must be contained In a compact set, and since
its mesh size is fixed, this means that there are only a finite number of points which
the algorithm can visit. We required the lower bound on the lengths of the edges in
the simplex to fix the mesh size of the grid. We required the upper bound on the
lengths of the edges in the simplex to give us a compact set over which to search.
However, once we accept these two restrictions, this means we can predict — without
knowledge of any function information — all the points the algorithm can visit from
any initial simplex.

Now we will prove that given any initial simplex, if we assume that the norm of
the gradient at the best vertex is uniformly bounded away from zero by a constant
@, the multi-directional search algorithm can only visit finite number of points.



Lo

Figure 3.4 Enumerating the vertices — when we know the best vertex



\

4

Figure 3.5 Enumerating the vertices — when we
do not know the best vertex



m%%
%

Figure 3.6 Enumerating the vertices — after one additional iteration







) L[]
]
.
.
. .
. .
.
L4 []
°
]
° .
)
.
° (]
3
L] Y °
. .
° .
°
° .
. .
L4 °
b4 .
L4 L}
L4 ]
. ° °
. ° .
° ]
° .
. ° -
L .
. .
. ]
A4 .
. ° °
o .
° ° °
L4 ]
o .
N .
ol
L] Y °
L4 .
L] Y °
L °
L] » °
L4 .
0 ° .
L] o
° ]
. .
.
°
L] °
e °
[ ] ) °
(]
° Y °
°
L4 [}
. .
.
.
°
° .
.
[ ] [ ] o
°
]
°
° .
.
.
.
.
°
o
]
.
[}

Figure 3.8 Enumerating the vertices — after removing all the edges



Claim 3.3 Suppose that (1) f is continuously differentiapje and (2)
L(v9) is compact. Assume that for all k there exist
which does not depend on . such that

[vren] 2 .

Then the multi-directional search algorithm can only visit a finite number
of points.

S a comstant ¢ > (.

Proof The proof is by construction.
Take the initial simplex. Designate any one of its vertices as “best.” (There is no
need to consider function information at this point.)

Rescale the simplex, using the contraction constant 8, until every edge in the
simplex satisfies the condition

m S flei-wl <6,

-—

forall:=1,..., n.

Find the least common denominator for the scale factors 6 and y. This makes
sense since we have stipulated that § and u must be rational numbers.

Divide the least common denominator by the reduction factor 4. Reduce the
simplex one last time by this factor.

Take the set of edges adjacent to the best vertex
{(vi = vo),i = l,...,n}

as a basis for the grid. Now take all integer multiples of the basis that generate points
inside the compact set M.

This will give a grid with fixed mesh size inside a compact set. Therefore the
number of points in the grid will be finite.

Furthermore, every possible simplex, given the initjal simplex, will map onto this
grid since all possible step sizes are integer multiples of the mesh size.

Therefore, the algorithm can only visit a finite number of points. c

3.3 Proof of the convergence theorem

Now that we have established that the multi-directional search algorithm is a descent
method, and that we can guarantee first, that the search directions will not deterio-

rate, and second, that the steps taken by the algorithm cannot become too long or
too short, we are ready to prove Theorem 3.1.



Proof The proof is by contradiction.

Suppose for all but finitely many k there exists a constant ¢ > 0, which does not
depend on k, such that

|V F(ed)]

> o.

Then, taken together. the upper and lower bounds on the length of the edges in the
simplex (Claim 3.1 and Claim 3.2), imply that the algorithm can only visit a finjte
number of points (Claim 3.3). But this contradicts Lemma 3.1, which guarantees ys
strict decrease on the function value at the best vertex in a finite number of iterations.
Thus, the hypothesis cannot hold. which means that

lim inf |Vs@s)] = o.

Then there exists some subsequence of the best vertices, {vg}, which converges to a
point z. € X..

We invoke Lemma 3.2 to complete the proof.

]



Chapter 4

Implementation Detajls

In Chapter 2 we gave both a general description and a formal statement of the multi-

directional search algorithm. However, before we can address the performance of the
algorithm, there are several implementation details that remain to be discussed. In
particular:

¢ How do we choose an initial simplex?

¢ How do we choose the expansion and contraction parameters 4 and §?

e How do we decide when to stop the algorithm?

most of our decisions were based on practical experience. Here we relied not only
o0 our own experience with the multi-directional search algorithm, but also on the
collective wisdom of others, acquired from vears of experience with direct search
methods — in particular, with the Nelder-Mead simplex algorithm. Armed with both
these guidelines and our experience, we will now comment on the implementation of
the algorithm. '

Both the rationale for our particular choices, as well as a discussion of the alter-
natives, can be found in the next three sections. Our choices — used to test for the
performance results given in Chapter 5 — can be found in Section 4.4.

4.1 Choosing an initial simplex

The multi-directional search algorithm requires only that the simplex used to start
the procedure be nondegenerate; i.e., the set of n + 1 points which defines the simplex
must span /R". The reason for this restriction is clear: if the simplex is degenerate, the
algorithm can only minimize over the subspace spanned by the degenerate simplex.
However, choosing the shape, size, and orientation of the initial simplex is another

matter entirely. Few criteria for the choice of these values have been published in the
optimization literature.



me

-
()

4.1.1 Shape

The convergence theorem for the multi-directional search algorithm does provide some
help in choosing the shape of the initial simplex. To see this, we return 1o the
observation. made in Section 3.2.2. that at any vertex in the simplex, the set of edges

adjacent to that vertex is uniformly linearly independent. Thus, at each sten &
exists a constant v > 0 which does not depend on k, such that

2T (vf — v*
max{—L’-——‘,)l-,i=l,...,n} > 5

there

1zil llvg — v

for all z € IR", z # 0. How might we choose a simplex to obtain the “optimal” value
of the lower bound ¥? We quantify this question as follows: Given a simplex S, define

I to be _ A
T
[(S,z) = min ( max —Ifi) .

n+1l vertices v \ e= edges adjacent to vertex v He” “I”

We are then interested in choosing a simpiex which solves the problem

maximize rgi__?l L(S.z). (4.1)
A regular simplex, i.e., one in which all the edges are the same length, is a solution
to (4.1). Since V f(vg) could lie in any direction it would thus seem that, in general.
we should start the multi-directional search algorithm with a regular simplex.

The use of a regular simplex is also consistent with much of the literature con-
cerning the other two direct search simplex algorithms, the Nelder-Mead simplex
algorithm (24] and the simplex algorithm of Spendley, Hext, and Himsworth [32]. In
fact, Spendley, Hext, and Himsworth specify that their algorithm start with a regular
simplex. It is also interesting to note that in their method the shape of the simplex
remains fixed across all iterations of the algorithm.

Nelder and Mead place no restrictions, other than nondegeneracy, on the shape of
the initial simplex. Most sources simply note this mild restriction but do not suggest
ways to generate an initial simplex from a given initial estimate (i.e., a single starting
point). Those that do address this issue give varying suggestions. For instance,
Jacoby, Kowalik and Pizzo (18] note that the Nelder-Mead simplex algorithm only
requires a general simplex, but they suggest that the construction of a regular initial
simplex assures that its vertices span the full space. (In fact, we currently use the
simple procedure given in their book to generate an initial simplex from a given



starting point.) Parkinson and Hutchinson (26] suggest starting the Nelder-\feaq
simplex algorithm with a right-angied simplex. This simplex can be generated by
defining each of the n new vertices to be some fixed distance in each of the n coordinate
directions from the initia] guess. In other words. given the unit basis Veclors e; and
scalars «;, we take the initial guess zy and construct the n points z,
Again, we are guaranteed that this simplex wi]l span the full space as long as the
@;'s are nonzero. Parkinson and Hutchinson g0 on to note, however, that in their
investigation into the efficiency of variants on the Nelder-Mead simplex algorithm. the
shape of the initial simplex proved to be relatively unimportant. Their conjecture,
which our own experience with the Nelder-Mead simplex algorithm confirms, is that

this result is to be expected since the initial simplex is rapidly modified by the action
of the algorithm.

=T+ e,

We close by noting that the shape of the simplex is scale dependent, so that a
regular simplex may not be a desirable choice if the variables differ widely in scale.
In this instance it may be preferable to construct a right-angled simplex as suggested
above: from the injtial estimate take a step in each of the coordinate directions e;
of length «;, where «; is an estimate of the relative scale of the z; variable. The
advantage of the multi-directional search algorithm is that any information about the
relative scale of each of the variables that is used to select the a;’s will be preserved
across all iterations of the algorithm. The same cannot be said for the Nelder-Mead
simplex algorithm. However, in the absence of any particular knowledge about the
problem to be solved, it is perhaps “safest” to start the multi-directional search
algorithm with a regular simplex — which is exactly what we choose to do.

4.1.2 Size

While the size of the initial simplex definitely affects performance, the scale depen-
dency of the simplex makes general guidelines as to the best size for the injtjal simplex
all but impossible. Since the problems we tested were not badly scaled, we typically
chose a regular simplex with sides of length one. Thus, our experience on this issue is
limited. The advantage of the multi-directional search algorithm is that the expansion
and contraction steps automatically adjust the size of the entire simplex by rescaling
the lengths of all the edges in the simplex. Thus, if the initial simplex is either too
small or too large, the algorithm will rescale accordingly. The problem, particularlv
if the simplex is too large, is that the algorithm may spend a significant number - :



\)

b
(W]}

iterations simply contracting the simplex before it can make any real progress. and
each iteration spent contracting the simplex requires 2n function evaluations.

For the Nelder-Mead simplex algorithm, the effect of size is much less ciear, Tae
Nelder-Mead simplex algorithm only rescales the entire simplex as a last resor:, ln
this case it takes a “shrink” step — which is equivalent to the contraction step i
the multi-directional search algorithm. Our experience shows that, in fact. the sh;in
step is almost never taken. (This will be discussed further in Chapter 5.) Instead.
the Nelder-Mead simplex algorithm changes the size of the simplex by moving only
one vertex at a time: however, each change also distorts the shape of the initial
simplex. After n iterations the simplex may be smaller or larger, but its shape
may also be significantly altered in the process. Our tests using the Nelder-Mead
simplex algorithm would indicate that this interaction between changing the size of
the simplex — and thus the shape — may prove disastrous. Further discussion of
this issue will be deferred until Chapter 3.

Parkinson and Hutchinson [26{ experimented with changing the size of the initial
simplex used to start the Nelder-Mead simplex algorithm. They concluded that vary-
ing the size of the initial simplex did produce significant variations in the number of
function evaluations required to solve each problem. Consequently, they suggested
two strategies for determining the initial size of the simplex. Both strategies require
line searches to determine the lengths of the edges in the simplex. Parkinson and
Hutchinson reported modest decreases in the number of function evaluations required
to minimize the function when either of these strategies were used to determine the
size of the initial simplex. The trade-off is that more work, in the form of local line
searches, must be done before starting the algorithm.

k

We make the following observations about the size of the simplex in the multi-
directional search algorithm: As we have already noted, the multi-directional search
algorithm automatically adjusts the size of the entire simplex by rescaling the lengths
of all the edges in the simplex. The problem, particularly when the simplex is too
large, is that the algorithm is very conservative in its rescaling; it only halves or
doubles the lengths of the edges — independent of any function information acquired
during the course of the reflection step. Each rescaling requires the computation
of n new function values, which makes the process costly. If we could accelerate
the rescaling, we might see a significant decrease in the total number of function
evaluations required to minimize the function.



o~
(@)

One idea we have considered. but not yet implemented, addresses t2e issue of
repeated contractions. QOnce we have computed the reflection step we
information to construct ag approximating quadratic along each of the
cent to the best vertex. [t would then be possible to predict, at nom;
cost, an approximate minimizer along each of those directions. We do
simplex to become any smaller than Decessary, so we choose that minimizer which
requires the least reduction in the size of the simplex. Now, we choose a strictly
positive power of the contraction factor that will reduce the simplex to a size that is
close to that required to identify the predicted minimizer. The effect of this accelera-
tion is the same as repeatedly contracting the simplex, however, it eliminates all the
intervening function evaluations. [deally, the new simplex will produce a gew best
vertex while avoiding all the intermediate computations. The other advantage of this
approach is that it preserves the fixed step sizes of the algorithm while making some
attempt to better approximate the minimum along at least one of the edges.

The same approach could be used to accelerate the expaansion step, but it is
less clear that this will significantly improve the performance of the multi-directional
search algorithm. In the first place, our experience indicates that the algorithm rarely
takes more than two expansion steps in a row. Thus it would seem that the extra
work, however minimal, would be difficult to justify. More importantly, recall that
if a new best vertex is accepted — which would be the case if the expanded simplex
were accepted — then at the next iteration the one direction we keep is the direction
which produced the new best vertex (i.e., the edge v§~'v¥). Thus we continue to
search along a direction for which we have already seen descent. In the meantime,
however, we consider n — 1 new search directions, one of which may produce even
bigger decreases in the function value at the best vertex for the same relative step
size. Thus we are less likely to pursue ever larger steps in a single direction at the
expense of better relative decrease in a new direction.

In summary, there are no automatic procedures for choosing the initial size of the
simplex. It should be clear that the multi-directional search algorithm can certainly
recover from a bad initial guess, but such adjustments — particularly if the simplex
is too large — may prove to be quite costly. We have suggested one possibility for
overcoming this problem, but this idea has not yet been tested. We close by noting
that as in the choice of shape, any information known about the function can, and
should, be used to determine the size of the initial simplex.

have enough
n edges adja-
nal additioga]
0ot want the



/)

4.1.3 Orientation

There is no question but that the orientation of the simplex will affec: the progress of
both the Nelder-Mead simplex algorithm and the muiti-directional search algorithm.
The reason is simple: the orientation determines the search direczions. Pzrkizson
and Hutchinson {26] found that varying the orientation of the initial simpiex had
a dramatic effect for all the functions they tested using the Nelder-Mead simplex
algorithm. They restricted their attention to problems with only two variables and
then rotated the simplex about the best vertex in increments of 1°. They found that
in some cases a rotation of oniy 1° changed the number of function evaluations by
=45%. Their conclusion:

Thus it appears that the deliberate choice of an initial orientation holds
an element of risk for all but very regular functions, due to the wide
variations in the aumber of required function evaluations necessitated by
even small changes in orientation. The difficulty is compounded by raising
the dimensionality of the objective function since this widens the choice
of orientation parameters in direct proportion.

Parkinson and Hutchinson also tested several automatic procedures whica would
determine appropriaie initial parameters for the orientation of the simplex. but re-
ported that none gave sufficient and regular gains over random selection to merit
normal use. One suggestion they did make was that the function values at the ver-
tices of the original simplex be used to approximate the direction of steepest descent.
This information could then be used to adjust the orientation of the initial simplex
so that the initial step would be along this approximation of the steepest descent
direction. The difficulty of this approach, as they. note, is that the quality of this
estimate depends on the scale of the initial simplex. We add that this adjustment
depends on the current local information about the function and thus is likely to have
little impact on subsequent iterations. '

Unfortunately, the same difficulties plague the multi-directional search algorithm.
In fact, because the set of search directions is finite, and fixed by the choice of the ini-
tial simplex, it is all the more obvious that the orientation of the initial simplex affects
the performance of the algorithm. To date, we have not spent much time addressing
this problem. Since we typically use the procedure suggested by Jacoby, et al. (18] to
generate the initial simplex for our test problems, we have not really experimented
with changing the orientation of the simplex. One idea we would like to pursue in-
volves restarting the procedure if it appears to be making little progress. The idea is



to use the function information at each of the vertices in the simplex to constryce an
approximation of the Hessian at the best vertex. The approximation

| and restar the
problem. We think this may prove to be useful when minimizing complex prodlems.

but we have yet to implement this procedure.

There is little doubt but that the choice of the initial simplex does affec: the per-
formance of both the multi-directional search algorithm and the Nelde-
algorithm. Any particular information about the
useful in hastening the progress of the method. T

Mead simplex
function to be minimized may be
he only general suggestion the the-

e choice of scale or orientation for the
initial simplex is not catastrophic. As we shall see in Chapter 5,

it is not clear that
the same can be said of the Nelder-Mead simplex algorithm.

4.2 Choosing the scaling factors

Underlying our discussion of the multi-directional search algorithm has been the as-
sumption that to expand the simplex we double the lengths of the edges in the simplex
while to contract the simplex we halve the lengths of all the edges. Yet, in the formal
statement of the algorithm found jn Section 2.3, we required only that the expansion
factor x4 be strictly greater than ope while th_e.cont_ra.ctio,n factor 4 was required to
be between 0 and 1. The convergéﬁce analysis, in particular the proof of Claim 3.3,
- added the restriction that 4 and @ be rational numbers so that we could determine
their least common denominator. Since the machine representation of any real num-
ber is, in fact, a rational number, this is indeed a very mild restriction. So why do
wechoosey=2and0=§?

Initially, these choices were based on precedent. Since the decision making proces-
of the multi-directional search algorithm mirrors that of the Nelder-Mead simplex al-
gorithm, it seemed reasonable to use those factors suggested by Nelder and Mead (24].
They tested a variety of choices on three small (n = 2,3,and 4), but difficult, test
+ problems. Their conclusion was that the simple strategy of either doubling or halving
the step sizes was clearly the best. Parkinson and Hutchinson (26] noted that the
recommendations made by Nelder and Mead were based on trials with only about



ly

(i)

one hundred combinations. so they systematically investigated several thousand com-
binations. They concluded that there was no general strategy which gave the hest
results for all the test functions. For the test functions they studied — which were
again, for the most part. small. complex and limited in number — taking expansion
steps of 2} and contraczion steps of i proved to be somewhat superior 0 the val-
ues suggested by Nelder and Mead. Walmsley (34] suggested retaining the expansion
factor of 2 while setting the contraction factor to % in an effort to slow the drastic
contractions that often lead to difficulties with the Nelder-Mead simplex algorithm.
A statistician who frequently uses the Nelder-Mead simplex algorithm in parameter
estimation has remarked to me that on some of his problems an expansion factor of
3 and a contraction factor of 1 are most effective.

As the above discussion indicates, the optimal choice of scale factors is as depea-
dent on the function to be minimized as is the choice of the initial simplex. In fact.
the two can clearly interact. This makes the choice of “optimal” scaling faczors ail but
impossible. Again, if experience with a certain class of problems indicates that a dif-
ferent choice of scaling factors gives better results, it is certainly reasonable to change
the scaling factors to reflect this information. In general. though, the simplicity of
p=2and §= % is perhaps the best argument for their choice.

One last motivation for the choice of parameters comes from a comparison, albeit
strained, with the model trust region strategies for globalizing quasi-Newton methods.
For an excellent discussion of globalization strategies, in general, and the model trust
region strategy, in particular, see Dennis and Schnabel [14]. In some sense, the size
of the current simplex, based on the step accepted in the previous iteration. gives us
some measure of how much we “trust” the information we know about the function.
We could then.éay that the current simplex, along with its reflection, provides us
with a crude “model” of the function about the current best vertex. We then use
this model to determine the size of our first step. If this step produces decrease,
we assume that our model may be too conservative, and thus double the size of the
trust region by doubling the size of the simplex. On the other hand, if the first step
does not produce decrease, we conclude that our current model is not to be trusted;
we then halve the size of the trust region by halving the lengths of the edges in the
simplex. This simple strategy of either doubling or halving the radius of the trust
region has proven to be very effective for the model trust region methods. We hope
that this same simple strategy also proves to be effective for the multi-directional
search algorithm.



30
We close with one final comment addressed to those who are familiar with the

Nelder-Mead simplex algorithm. The Nelder-Mead simplex algorithm inciudes a sca]

e
factor for the reflection step. In the original

version of our algorithm we also included
a scaling factor . We required the scaling factors to satisfy the foilowing:

0<9<1_<_/\<;1.

As long as all three scaling factors are rational numbers, and \ < :, the con-
vergence analysis of Chapter 3 still holds. We removed A from our formuiation of
the multi-directional search algorithm based on the observation that after the first
iteration, the size of the current simplex in some sense captures the function informa-
tion we acquired at the previous iteration. Thus, it seems best to start the current
iteration with a step of the size that Was most successful in the previous iteration.
Once we have accurnulated additional information about the function by trying the
reflection step, we then decide how to further modify the size of the steps we take.
Since this implies that A is always equal to one, there is no need to include the addi-
tional parameter \ in either the algorithm or the analysis. We note that this choice
is consistent with the recommendation of Nelder and Mead and, in fact, with m
implementations of the Nelder-Mead simplex algorithm.

Q3T

4.3 Stopping criteria

We now turn to a discussion of how to stop the algorithm. Here, again, we have
relied on the suggestions that exist for the Nelder-Mead simplex algorithm. Neider
and Mead suggested comparing the standard deviation of the function values in the

simplex with a preset value and stopping when the standard deviation falls below this
‘value. This leads to the stopping test:

n ¥ — 7)?

& (f(v¥) = f) <

i=0 n
where f is the mean of the function values at the n + 1 vertices and ¢ is the preset
tolerance. As Nelder and Mead observed, the success of this criterion depends on the
simplex not becoming too small in relation to the curvature of the surface until the
final minimum is reached.

Woods [38] showed, with two simple examples, how this stopping criterion can

lead to premature termination. In the first instance, the simplex straddles a local



[\

(w1}
—

minimizer, which means that the algorithm has successfully identified the neigibor-
hood of a local minimizer. Unfortunately, the best vertex is at a local maximizer. His
second example illustrates the reservation voiced by Nelder and Mead: if the curva-
ture is slight the algorithm may halt prematurely. In both illustrations the di= ficu
lies in the fact that while the function values at the n + 1 vertices in the simplex ar:e
“close,” the simplex itseif is stiil relatively large. Thus the algorithm halts without
recognizing that the simplex has not vet identified a solution. Numerous suggestions
have been made for overcoming this problem — all attempt to force the simpliex to
collapse before actually halting the algorithm.

Box, Davies, and Swann (4] also used the standard deviation of the function val-
ues to test for convergence. but they suggested that this test be applied differently.
Instead of calculating the standard deviation before each iteration, they recommended
calculating it every time some fixed number of function evaluations have been made.
Two successive values of the standard deviation must be less than the specified toler-
ance in order to terminate the aigorithm. In addition, the corresponding mean values
of the function (at the n + 1 vertices) are not allowed to differ by more than some
specified amount. Their goal is to ensure that the search continues until the simpiex
has collapsed — ideally onto a minimizer.

Parkinson and Hutchinson (26] suggested that the stopping criteria should restrict
both the range in f and the corrections to v; for all i. They proposed the following
two tests:

flva) = f(vg) < e,

where v* is the “worst” vertex in the simplex, i.e., the vertex with the largest function
value, and -

% i uv,{""'1 - v?“z < €. (4.2)
=0

Woods [38] interpreted the second stopping criterion proposed by Parkinson and
Hutchinson (4.2) as a measure of how far the simplex has moved. He then noted
that the distance the simplex moves is related to the size of the simplex, and on the
basis of this observation proposed that the size of the simplex be used as a stopping
criterion. This leads to the following test:

1
= max
A 1<i<n

|v!‘-vc','" < e, (4.3)



where A = max (1. st ) This would then measure the relative size of tke simplex
by considering the length of the longest edge adjacent to vf,

We found the test proposed by Woods the most appealing since it promised .
circumvent both of the difficulties he illustrated. Furthermore, in the multi-cirectionaj
search algorithm. the length of each edge adjacent to the best vertex define
step of length “one” in the direction determined by that edge. Thus, using (4.3) to
test for convergence in the muiti-directional search algorithm is equivalent t0 the “step
tolerance” test. proposed by Dennis and Schnabel [14] for the quasi-Newton methods.
This test measures whether the algorithm has ground to a halt, either because it has
stalled or converged. by imposing a measure of the relative change in the successive
values of y§. Dennis and Schnabel also suggested a reasonable guideline for choosing
¢: if p significant digits of z. are desired, ¢ should be set t0 10-7..

Our current implementations of both the multi-directional search algorithm and
the Nelder-Mead simplex algorithm, which were used to generate the performance
results discussed in Chapter 3. use (4.3) as a stopping criterion. In addition, we
limit the total aumber of iterations — though, as will be seen, our tolerance for this
[2 many settings it may be more appropriate

to limit the total number of function evaluations rather than the total number of
iterations.

s a relative

criterion is currently very generous.

Our overall experience using the “step tolerance” as a stopping criterion has been
favorable. In reviewing our test results, however, we noted that once the multi-
directional search algorithm identifies a solution, it often seems to spend a great
many iterations contracting before it finally satisfies (4.3). This should not be too
surprising. The multi-directional search algorithm is really a gradient related method.
As a consequence, it has good global properties, but it is slow to converge locally.
The question, then, is whether or not the user is interested in identifying the solu-
tion accurately, or in identifying the neighborhood of a solution. As Parkinson and
Hutchinson (26] noted, the stopping criteria “should normally be selected according
to the objective required, e.g. position or value of the minimum.”

We have now decided that as in the implementations of quasi-Newton methods, it
is probably best to test both some measure of the length of the steps taken as well as
some measure of the function values. With this in mind, we are interested in testing
a “function tolerance” criterion of the form:

k k
L b = £k

§ 1sisn  2lufF-vil T

g, (4.4)



/]

,/3

-~

e
<

where § = max (l. L flel) ) We must confess that we have not yet implemeated :4is

idea. so (4.4) may need further modification. The appeal of the func:ion tolerance
test, however, lies in the fact that it attempts to make use of the function izformation
we compute at each iteration. Furthermore. since the best vertex v¥ i3 “zentered”
between the original simpiex and the redected simplex. this shouid give

information about the neighborhood in which v lies.

18 some

4.4 Our choices

As we have seen in the preceding discussion, there are no easy answers when it
comes to choosing the initial simplex, the scaling factors, or the stopping criteria.
[n summary, we made the foilowing choices to run the tests we report in the nex:
chapter:

To generate an initial simplex, from a given starting point, we use the simpie
procedure suggested in Jacoby, Kowalik and Pizzo (18] to generate a regular simplex.
Since the problems we tested were not badly scaled, we chose to start with edges of
length one. The orientation of the simplex is fixed by the procedure given in {13].

Qur choice of scaling factors is consistent with our discussion of the algorithm ia
Chapter 2; we set 4 =2 and 6 = L.

Finally, our current implementation uses the test suggested by Woods to stop :the
algorithm. This choice, (4.3), measures the relative size of the simplex by considering
the length of the longest edge adjacent to v§ and stops when this measure falls beiow
the given tolerance. It should be noted, however, that we think an additional test.
based on function information, needs to be added to prevent additional iterations
when it should be clear that a solution has been identified.



Chapter 5

- Performance

From the beginning of this research, we have been interested in developing an ai.
gorithm that is practical. First and foremost the method needed 1o be robust; we

wanted an algorithm for which there Was reasonable certainty that the answer re-

turned was, in fact. a local minimizer of the function. Our convergence analysis led
us to believe that such a claim was possible for the multi-directional search algorithm.

Our performance resuits wouid séem to confirm this conjecture. We also wanted an
algorithm that would work wei] when the function

values were “noisy,” by which we
mean that the function values are subject to error.

Again, our convergence analysis
suggested that noise in the function values would not have a detrimental effect on
the progress of the search — another conjecture which our performance resuits would
seem to sustain.

Before presenting our test results. we would like to discuss both the problems we
tested and the factors we varied.

5.1 Preliminaries

We believe that ultimately the multi-directional search algorithm will be most in-
teresting when implemented on parallel machines. As we have already noted in
Chapter 1, the two main costs in numerical optimization procedures are the solu-
tion of linear systems of equations and the evaluation of functions. These are the two
areas where parallel computation appears to be most beneficial in numerical optimiza-
tion. There are no linear systems of equations to be solved for the multi-directional
search algorithm. On the other hand, the n function evaluations required at each
step of the multi-directional search algorithm can be computed concurrently, making
the algorithm ideally suited to parallel computer architectures.

To test our algorithm, we used standard problems from the optimization litera-
ture. None of these problems s expensive to compute, and all of them possess easily
computed analytic derivatives. Moreover, many of these problems are relatively small

54



(el
[W]]

— of dimension two, three. and four. Nevertheless, they will give us some icdication
of the performance of the algorithm. if not of its competitiveness.

One way to simulate expensive function evaluations is to write function evajuation

routines which perform large numbers of superfluous foating point operations. 'Ve
have used this trick in the past to generate “representative’ timing resuits ‘or a
particular parallel machine. For our purposes, however, these tests were a0 very
interesting since they reaily provided more information about the machire than abouyt
the algorithm. We have little interest in establishing benchmarks of the perfonna.xice
characteristics of a given machine. Thus, no timing results will ‘be reported.

Given that we are not interested in timing results, per se, we decided to use a
different measure of performance. Since our goal is to reduce the time spent computing
function values, we counted the number of actual function evaluations required to
return a solution for the specified tolerance level and then concocted a measure of
the effective number of function evaluations. To derive this measure we simply noted
that if we had twenty processors. and the dimension of the problem was thirty-two,
then we could “effectively” compute all the function evaluations in the time it would
take to compute two function values on a sequential machine. This gives an effective
measure of two. Our current implemen:ation of the multi-directional search algoritam
makes no attempt to address the issue of load balancing, though we will have more
to say on this subject later. The machine we used to run our tests was a Sequent
Symmetry with twenty processors, but we could just as easily have run our tests on
a sequential machine. In fact, our results indicate that there may be some argument
for using this algorithm on sequential machines as well.

5.1.1 The competition

For the sake of comparison we used three other algorithms to test the same set of
problems:

The Nelder-Mead simplex algorithm

We chose the Nelder-Mead simplex algorithm because in some sense this is the most
reasonable direct search method against which to compare our algorithm. Both al-
gorithms are direct search methods which use a simplex to determine the search
direction and the size of the step. Both algorithms use the same decision-making
Process in accepting or rejecting trial steps. Neither algorithm requires derivatives,



O
(@2

and, finally, both algorithms could be implemented with identical Stopping criteria.
We were also interested in the Nelder-Mead simplex algorithm because it is so widely
used. Margaret Wright has stated that over fifty percent of the calls received by the
support group for the NAG software library concerned the version of the Neider-Meaq
simplex algorithm to be found in that library.

We programmed our own version of the Nelder-Mead simplex algorithm. The only
modification we made to the algorithm as originally specified by Nelder and Mead
was in the acceptance test for the expansion step. The original algorithm required
that the function value at the expanded vertex be better than the function value at
the best vertex, i.e.. f(v¥) < f(vg). We instituted a stricter test; we only accepted
the expanded vertex if the function value at that vertex was better thap the function
value at the reflected vertex. j.e.. f(vF) < f(v¥) < f(u¥). This modification was made

in an effort to slow distortions to the shape of the simplex, for reasons that we shall
discuss later.

The method of steepest descent

Our convergence analysis made clear the relation between the multi-directionaj search
algorithm and gradient related methods. The multi-directional search algorithm
could, in fact, be viewed as a crude approximation of the method of steepest descent
with finite-difference approximations to the gradient. As a consequence, we thought
that a comparison between the two methods would be interesting. Thus, while the
problems we tested did have analytic derivatives, we used finite difference approxi-
mations to the gradient to determine the search direction. We used line searches to
globalize the method. Rather than write our own code, we used the UNCMIN code,
which is described in Appendix A of Dennis and Schnabel (14] and is available from
Robert B. Schnabel at the University of Colorado.

A quasi-Newton method

Finally, we compared our results to those found using a quasi-Newton method, since
these are the methods of choice in the numerical optimization community. As with
steepest descent, we did not use analytic derivatives; the gradient was derived using
finite difference approximations and the Hessian was updated using BFGS. We also
used a line search strategy to globalize the method since this strategy seemed most
consistent with the other three algorithms. Again, we used the UNCMIN code.



(W1}

5.1.2 The test problems

Our original tests inciuded such classic problems as the Beale function, ke Helical
Valley function. and the Wood function. which are of dimension two. three. aad four,
respectively. However. the more interesting results came from the prodlems for whijch
we could vary the dimension since the behavior of the two simplex methods as n
was increased proved to be most illuminating. Asa consequence, we will devote our
discussion to test problems with variable dimension from the Moré, Garbow, and
Hillstrom problem set [22]. These problems are given below. Note that for all six
problems the function to be minimized is defined to be

flz) = 3 A=),

1. Penalty function [
(a) n variablee. m=n+1.
(b) filz)=10"%(z;=1), 1<i<n
fartlz) = (Tio 22) - 4
(c) zo=1(§) where ¢ =
(d)  f. =2.24997 ... 10" ifn=4
fo=T7.08765---10"° ifn=10

2. Ertended Powell singular function
(a) n variable but a multipleof 4, m=n
(b)  fai-3(z) = Tuicz + 10242
fai-a(z) = 5%(34:‘-1 - Z4i)
faie1(2) = (24ima = 224i21)?
fai(z) = 108 (z4i3 = 24)?
(€) zo=(&) where &3 =3, &j—a=-1, &1 =0, &;=1
(d) f.=0 at the origin

3. Eztended Rosenbrock function
(a) n variable but even, m=n
(®)  faici(z) = 10(z2 — z3;_y)
fai(z) =1 = 223y
(c) zo=1(&) where &1 =-12, &=1



4. Trigonometric function

(a)
(B) filz)=n-Tr (
(C) I°=(£,‘...L)

n variable. m=n

n

(d) fo=0

5. Variably dimensioned function

(a)
(b)

(c)
(d)

n variable. m=n <2
filz) =12z, - 1.
fn#—l(z)= ?=1j(33‘1)

n r 2
fﬂ+2(z) = ( ]=l]k'r] - l))
Zo = (§,) where S=1- Z
fo=0 at (1.....1)

6. The perfect function (the [*-norm)

(a)
(b)
(c)

n variable. m=n
f:‘ =T
To = (10,.10)

(d) f.=0 at the origin

cosz; + (1 — cos z;) — sin z;)

t=1,...,n

e

xy

Note that the last problem is not in the Moré, Garbow, and Hillstrom problem

set, but we included it as a “benchmark™ problem:

unexpected result.

5.1.3 The questions to be answered

Our testing was designed to address the following questions:
e What happens as we vary the dimension of the problem?
e What happens as we allow increasingly smaller step sizes?

At this point we assume that the function evaluations are “noise-free,”
tion values are accurate to machine precision. The quasi-Newton meth

its inclusion produced a most

i.e., the func-
od was clearly



wn
Vo)

the winner in this case. which should be no surprise. The interesting comparisons
here are between the other three methods, as we shall see in Section 3.2.

To even up the race. we then asked the following question:

* What happens if we introduce random error into the function vajyes?

Varying the dimension

Varying the dimension of the test problems was straightforward. Since the extended
Rosenbrock function requires that n be even, and the extended Powell singular func-
tion requires that n be a power of four, we limited our tests accordingly. We started
all problems with n = 2 (except for the extended Powell singular function) and ended

all problems with n = 40. Intermediate values for n typically included 4, 8, 16, 20,
and 32.

Decreasing the step size

Allowing increasingly smaller step sizes was also straightforward, but requires a little
more explanation. [n Section 4.3 we discussed. at some length, the choice of stopping
criteria for the multi-directional search algorithm. Our final suggestion was a test
that measured the relative size of the simplex by considering the length of the longest
edge adjacent to the best vertex:

k _ okl
Ui =y <

112{35’5‘ l e., (5.1)
where A = max (l, llvé‘“) As we noted, since the length of each edge adjacent to the
best vertex defines a relative step of length “one,” this test could then be viewed as
a step tolerance test. Thus, ever decreasing values of ¢ allow for ever decreasing step
sizes. '

We allowed ¢ to vary from 0.10D-01 to 0.10D-07. We began our tests with
¢ = 0.10D-01 and proceeded until (5.1) was satisfied. We then divided ¢ by 10 and
restarted the algorithm with our current solution. This same procedure was used for
the Nelder-Mead simplex algorithm, though it should be noted that the connection
between the stopping criterion (5.1) and the size of the step is not quite as clear since
the size of the step depends on the shape of the simplex as well as on the lengths of
the edges.



50

The UNCMIN code we used for the steepest descent method and the quasi-Newton
method emplovs both a “step tolerance” and a “gradient tolerance” convergence tes:.
For a further discussion of these two tests, see Dennis and Schnabej [14]. Since
we were most interested in stopping when the step sizes became sm
varied the step tolerance constant ¢ as described above. To minimize t
gradient tolerance test. we set its tolerance counstant to machine preci
be noted. however. that in many of our experiments, as ¢ became smaller and smajler.
the UNCMIN routines stopped because the gradient tolerance test had already been
satisfied. This biases our results in favor of the methods tested using the UNCMIN
routines.

One final point to be made is that the tests using the UNCMIN routines were
restarted from the initial point Zo for each new value of . We did not simply restart
the procedure with the current solution. as we did for the simplex methods. This
allowed us to get fair counts — without duplication — for the number of function
evaluations required to converge to a solution for the given value of ¢. This difference

explains the seeming anomalies in the runs for which random errors were introduced
in the function valuyes.

all enough, we
he efect of the
sion. It should

Finally, all four methods were tested in double precision. This allowed us a rea-
sonable range over which to vary our step tolerance parameter e.

Introducing random errors

One of our aims was to develop a jorithm that worked well in the presence of noise.
No standard suite of test probler  ists for noisy functions. Consequently, we elected
to repeat our first round of experiments and simply add random perturbations to the
function values.

To simulate “noisy” function values, we first calculated the value of f at the
point z. Then, we reassigned the value of f as follows:

f(z) = f(z)+max{o-|f(z)|,n}" u,

where 4 is a random number with uniform distribution on [-1, 1] and p and 7 are
parameters set by the user. .To obtain # we used the random number generator on
the Sequent Symmetry. For the test results we will show, p and 7 were both equal to
0.10D-03.

One final point to make is that for both the steepest descent method and the quasi-
Newton method, the finite difference approximations to the gradient were computed



sensibly. The UNCMIN code specifically asks for the aumber of good digits in the
optimization function routine. Our answer to this question was commensurate with
the degree of error we were introducing to the function values, Thus. the tests were
not biased against the finite difference approximations to the gradient.

Other than the modification to the value returped by the function evaiuar

tion
routines, and the corresponding change in the number of good digits, the tests with

random noise were run exactly as described above.

5.2 Results

The most interesting result we have to report is, in some ways, the most unexpected:
The Nelder-Mead simplex aigorithm is simply not robust. In the course of our re-
search, the convergence analysis for the multi-directional search algorithm revealed
that the uniform linear independence of the search directions assured us that at least
one search direction was uniformly bounded away from being orthogonal to the gradi-
ent. On the other hand. we could never prove that the search directions chosen by the
Nelder-Mead simplex algorithm were uniformly bounded away from being orthogonal
to the gradient. Thus we asked what happens to the angle between the gradient at the
worst vertex v,, the vertex from which the Nelder-Mead simplex algorithm searches.
and the search direction generated by the algorithm. The answer was startling.

On every test problem for which the dimension of the function could be increased.
the very pathology we cannot prevent in the Nelder-Mead simplex algorithm actually
occurs: The search direction becomes orthogonal to the gradient at the point from
which we search. The disconcerting consequence is that the answer vg returned by
the algorithm is not a solution. This phenomenon is demonstrated in Tables 5.1-35.6.

Note that this deterioration of the search direction occurs even for the “perfect”
function z7z, as can be seen in Table 5.6. In fact, the Nelder-Mead simplex algorithm
was halted before completing the table because the maximum number of iterations

.allowed (300,000) had been reached. Also observe that the negative gradient at v
and the search direction become increasingly orthogonal with each decrease in the
size of the step tolerance ¢. Moreover, this unfortunate behavior appears at different
dimensions for different problems — as early as n = 8 for the Penalty function I
(Table 5.1) and as late as n = 40 for the Trigonometric function (Table 5.4). Finally,
note that this deterioration continues for every choice of n greater than that at which
it first occurs, as we see for the extended Rosenbrock function in Tables 5.3 and 5.7,



(@)
[]V]

and for z7z in Tables 5.6 and 3.3. These observations rajse serious doubts as tq

applicability of the Nelder-Vead simpiex algorithm for all byt the sma]
n.

the
lest vajyes of

Popular wisdom has long stated that the Nelder-Mead simplex algorithm is iper.
ficient for problems with a “large” number of varjables, say n 2 10, but we were
aware of any satisfactory explanations as to why this was so. Qur aumerical res
would indicate that not only is the Nelder-Mead simplex algorithm inefficient on |
problems, it is also unreijable. Of most concern should be the fact that we ¢
predict at what dimension the search directions will deteriorate.

While we have demonstrated Aow the Nelder-Mead simplex algorithm deteriorates
in higher dimensions. we stiil have not explained why this is so. We do not vet have
an answer to this question, but we do have a conjecture as to the probable cause. We
believe the problem can be traced back to the interaction between the size and the
shape of the simplex used by the Nelder-Mead simplex algorithm.

As we noted in Chapter 4. the multi-directional search algorithm automatically
rescales the entire simplex if it is either too large or too small. The Nelder-Mead
simplex algorithm. however, only rescales the entire simplex as a last resort. If no
improvement can be found by taking any other step, the algorithm takes a “shrink”
step — which is equivalent to the contraction step of the multi-dimensiona] search
algorithm. It is an easy exercise to show that if the original simplex and its reflection
(as specified by the Nelder-Mead simplex algofithm) are in a region where the function
is convex, then the Nelder-Mead simplex algorithm will not consider the shrink step.
The proof is similar to that given for Lemma 3.1. In fact, when we ran the Nelder-
Mead simplex algorithm on all the problems listed in Section 5.1.2, we found that even
when the functions were not convex, only 33 out of some 2.9 million iterations resulted

in a shrink step. Thus, if the initial simplex is too large, the Nelder-Mead simplex
algorithm only contracts one vertex at each iteration — and each contraction results
in a distortion of the initial simplex. As the dimension of the problem grows, resizing
the entire simplex requires more and more iterations, each of which is conducted
independently. As a result, the distortion of the simplex increases with the dimension

of the problem. This distortion, in turn, means that it is ever more likely that the
search directions will deteriorate.

not
ults
arge
annot

This conjecture is consistent with observations made by both Parkinson and
Hutchinson (26] and Walmsley (34]. Parkinson and Hutchinson, in fact, suggest

-



. reducing the incidence of numerous successive contractions. [n our
experience the latter pnenomenon occurs with NMS [the Nelder-Meag
simplex algorithm| when a drastic rescaling of the simplex is needed in
order to change substantially the direction of search. and can even zive
rise to apparent convergence at a false minimum. )

By contrast, the multi-directional search algorithm, while slow to coaverge, is
very reliable. Consider. for example, its behavior on the extended Rosenbrock func-
tion at the same dimension for which the search deteriorates in the Nelder-Mead
simplex algorithm. The results are contained in Tables 3.3 and 5.9. The extended
Rosenbrock function. which is a very hard problem to solve, does prove to be dif-
cult for the multi-directional search algorithm. However. while the multi-directionai
search algorithm does require both small steps and a great many function evaluations
to reach a solution. the final answer returned by the algorithm (for ¢ = 0.10D-07)
is correct to the square root of machine precision, which is certainiy a respectable
showing. Furthermore. this behavior is consistent across all the choices of n for which
we tested the method on this problem, as shown in Table 3.10.

The reliability of the multi-dimensional search algorithm also holds for the “per-
fect” function. Again. we look at the dimension for which the search direc:ion dete-
riorates in the Nelder-Mead simplex algorithm, as shown in Tables 5.6 and 3.11. The
final answer returned by the algorithm (for ¢ = 0.10D-07) is correct to machine pre-
cision. Table 3.12 shows that this behavior is again consistent across all the choices
of n for which we tested the method on this problem.

For the method of steepest descent and the quasi-Newton function, the “perfect”

function zT

z is trivial to solve; with exact representations for the gradient. both
methods solve the problem in one step. With finite difference approximations to
the gradient, both methods require two iterations to solve the problem. We inciude
Tables 5.13 and 5.14 to show how both of these methods perform on the more difficult
extended Rosenbrock function. The difficulty of the extended Rosenbrock function
can be seen in the fact that the steepest descent method required over 100,000 function
evaluations to converge to a solution, although this is still much better than the num-
ber required for the multi-directional search algorithm. The quasi-Newton method
demonstrated very clearly its claim as the thoroughbred of optimization methods.
The interesting question then becomes, what happens when we introduce random
noise into the function values to even up the race. As we have already noted, for
these tests we introduced error on the order of 0.10D-03, which means that we should



54
expect three significant digits in the solutions returned by each of the algorithms. .

will limit our discussioq to the function 27z and show what happens for each of the
four methods when n = 16.

The Nelder-Mead simplex algorithm returned the same answer, to fve significant
digits. regardless of the step size. Unfortunar.ely, the answer returned was only correcs
in the first two digits, rather than in the first three digits we expected. Note also
at v; and the search direction stays
dangerously close to 90°. Even more disturbing is the fact that this behavior is gow
occurring for n = 16, rather thag n = 32 when
Thus the problem we have seen with Nelder-M

“noise” as a complicating factor.

we do not add random perturbations.
ead only becomes worse when we add

Again, the multi-directional search algorithm proved to be robust. [n Table 3.16
We can see that we have at least three significant digits in the solution, regardless of
the step size. More promusing is the fact that we o longer see signific

the number of function calls required to converge to a solution as we
step size.

ant jumps in
decrease the

Finally, we look at the performances of the steepest descent method and the quasi-
Newton method once we have introduced random perturbations. As can be seeq in
Table 5.17, the Steepest descent method returned only two significant digits when

¢ = 0.10D-03. In Table 5.18 we see that the quasi-Newton method failed to return
the correct answer in two cases.

5.3 Conclusions

Our preliminary tests of the multi-directional search algorithm have led us to the
following coﬁclusiona:

First, the Nelder-Mead simplex algorithm is not robust. The convergence proof
for the multi-directional search algorithm led to a revelation of how Nelder-Mead fails
on large problems. What we find troubling is that “large,” in this context, cannot
be predicted a priori. For the Penalty function [, for instance, “large” means n > 8.
Furthermore, when we add random perturbations to the function values, the Nelder-
Mead simplex algorithm deteriorates even sooner. There is no question but that the
Nelder-Mead simplex algorithm is usually faster than the multi-dimensional search
algorithm when the problems are small, i.e., of dimension 2, 3, or 4, but we would



(@ 5
[T]

caution anyone using this algorithm. particularly in an experimental setting, to be
wary of the answers returned by the algorithm when the problems are any larger.
We have also seen that the multi-directional search algorithm is slow byt
even on moderately large probiems. However, we must confess that the aimos: ope
million actual function evaluations required to solve the extended Rosenbrock

k func-
tion for n = 16 and ¢ = 0.10D-07 (see Table 5.9) is unacceptably high. [n the case of
the extended Rosenbrock function. we know of at least one reason why the aigorithm
requires so many function evaluations. As we discussed in Chapter 4, if the simplex
used to start the procedure is too large, the multi-directional search algorithm will
automatically rescale the simpiex. However, this procedure may prove to be quite
costly. We have carefully traced the steps taken by the multi-directional search algo-
rithm for the extended Rosenbrock function when n = 2 What we have discovered
is that the algorithm takes hundreds of contraction steps before the simplex is small
enough to allow the search to make any progress. In Section 4.1.2 we discussed a
simple way to accelerate these contractions. The overhead required for this accelera-
tion is nominal and the net effect could lead to significant savings in the number of
function evaiuations required by the algorithm.

steady.

Another ooservation. also made in Chapter 4, is that the multi-directional search
algorithm uses a step tolerance test to determine whether or not to stop the search.
While this test certainly works, we believe that we should also implement another
test that makes use of the function information we acquire at each iteration to decide
whether or not the algorithm is near a solution. One such “function” tolerance test
was discussed in Section ¢.3.

Finally, we note that our current implementation of the multi-directional search
algorithm does not yet exploit the full capabilities of a multi-processor machine. We
have several interesting idea for making better use of multiple processors but we will
defer such discussions to the next chapter.

In closing, let us say that we believe we have the start of a promising algo-
rithm. Our preliminary performance results give us reason to believe that the multi-
directional search algorithm may prove to be most useful when the function evalua-
tions are subject to error. We intend to devote some time to modifying the algorithm
to make it more efficient. We still have many ideas to explore.



step function the angle betweeq
tolerance flv) calls ' =V f(v?) and the search direc:ioi
.10D-01 | .70355D-04 1605 89.396677792198 |
.10D-02 | .62912D-04 3360 89.935373548613 ’
.10D-03 | .62912D-04 3600 89.994626919197
.10D-04 | .62912D-04 3670 89.999288284747
-10D-05 | .62912D-04 3750 89.999931862232
.10D-06 | .62912D-04 3872 89.999995767877
.10D-07 | .62912D-04 3919 89.999999335010
Table 5.1 Neider-Mead on Penalty function I with n = 8
step function the angle between
tolerance f(v3) calls =V f(v:) and the search direction
.10D-01 | .49925D-02 24791 89.385723944024
.10D-02 | .23830D-02 43986 89.933941414922
.10D-03 | .23749D-02 66848 89.991402723733
-10D-04 | .15441D-02 | 125781 89.999000208078
-10D-05 | .15441D-02 | 127998 89.999911526521
-10D-06 | .15441D-02 | 140394 89.999989953855
-10D-07 | .15441D-02 | 163009 89.999999795613

Table 5.2 Nelder-Mead on extended Powell singular function with n = 32

66



step function the angle between
tolerance flvs) calls -V f(v}) and the search direction
.10D-01 | .34838D=+02 193 69.428066137874 f
.10D-02 | .33303D+01 4868 89.941249866308
.10D-03 | .11080D+01 19764 89.966823864943
.10D-04 | .11080D+01 20084 89.997448235539
.10D-05 | .11080D+01 20232 89.999747777662
.10D-06 | .11080D=+01 20443 89.999968762310
.10D-07 | .11080D+01 20574 89.999996161174
Table 5.3 Nelder-Mead on extended Rosenbrock function with n = 16
step function the angle between
tolerance flvg) calls -V f(v:) and the search direction
.10D-01 |.12469D+00 | 4565 78.427653672869
.10D-02 | .21610D-02 13130 80.680288863396
.10D-03 | .62321D-04 33436 | 84.899823503396
.10D-04 | .19584D-04 62190 89.129939277735
.10D-05 | .63252D-05 | 176526 89.852022558573
.10D-06 | .64708D-05 | 213009 89.984435547320
.10D-07 | .64699D-05 | 259611 89.998494778414

Table 5.4 Nelder-Mead on Trigonometric function with n = 40




step function the angle between
tolerance flv3) calls  —Vf(v?) and the search direction
.10D-01 | .24123D =00 338 84.219810666003
.10D-02 | .44628D-01 1680 88.913585473601
.10D-03 .26354D-01 5249 89.880567806884
.10D-04 | .13416D-01 8166 89.982604055225
.10D-05 .12678D-01 15901 89.998395072707
.10D-06 | .12673D-01 16190 89.999852203339
.10D-07 | .12678D-01 16781 89.999981760597
Table 5.5 Nelder-Mead on Variably dimensioned function with n = 16
step . function the angle between
tolerance f(vd) calls =V f(v:) and the search direction
| -10D-01 | .27091D+00 38601 89.509783891566
.10D-02 | .23877D+00 63473 89.954928916223
.10D-03 | .23877D+00 T1874 89.995057909425
-10D-04 | .23461D+00 | 173010 89.999471407025
-10D-05 | .23461D+00 | 195185 89.999954253610
------ .23461D+00 | 353670 89.999410272082

Table 5.6 Nelder-Mead on z7z with n = 32



step function the angle between
tolerance flvg) calls =V f(v3) and the search direction
.10D-01 | .43187D+02 236 37.350441344332 i
.10D-02 | .41925D+01 9726 89.711342380932
.10D-03 | .38871D+01 13141 89.993225430277
.10D-04 | .36634D+01 18743 89.993332178692
.10D-05 | .36634D+01 19429 89.999914206721
.10D-06 | .36634D+01 19824 89.999994959976
.10D-07 | .20803D+01 59303 89.999999706363
Table 5.7 Nelder-Mead on extended Rosenbrock function with n = 20
step function the angle between
tolerance flvg) calls -V f(v:) and the search direction
.10D-01 | .17176D-01 48459 89.287624428318
.10D-02 | .13606D-01 | 118057 89.893411000844
.10D-03 | .13598D-01 | 141548 89.991891633507
.10D-04 | .13598D-01 | 166018 89.999136336676
.10D-05 | .13598D-01 | 200592 89.999918332639
.10D-06 | .13598D-01 | 327426 89.999988870646
------ .13598D-01 | 345475 89.999992334691

Table 5.8 Nelder-Mead on zTz with n = 40

(W 5

W



step function calls

tolerance f(v3) actual effective
i i |

| -10D-01 | .36169D+02 160 10
-' |

| .10D-02 | -36131D+02 320 20

-10D-03 | .92623D-01 | 33680 3353

-10D-04 | .22256D-02 151888 9493

.10D-05 .37254D-04 | 331232 20702
.10D-06 .72630D-06 | 579808 36238

.10D-07 | .30764D-08 904880 36555

—

Table 5.9 Multi-directional] search on extended
Rosenbrock function with n = 16

function calls
n f(v3) actual erective

2| .22725D-09 20870 10435
4 | .35718D-09 67748 16937
8 | .18606D-08 | 235032 29379
16 | .30764D-08 | 904880 363535
20 | .17643D-07 | 1335220 66761
32 | .22632D-07 | 3127520 | 195470

40 | .27874D-07 | 4975480 | 248774

Table 5.10 Multi-directional search on extended Rosenbrock
function with step tolerance ¢ = 0.10D-07



step function calls
tolerance f(v3) actual effective

.10D-01 | .46878D-04 | 14176 886
.10D-02 | .54975D-06 | 17336 1096
.10D-03 | .11928D-07 | 21312 1332
.10D-04 | .13482D-10 | 25984 1624
.10D-05 | .28071D-11 | 27136 1696
.10D-06 | .11419D-13 | 32832 2052

.10D-07 | .49835D-16 | 37632 2352

Table 5.11 Multi-directional search on z7z with n = 32

function calls
n f(vg) actual effective

2| .23534D-17 236 118

4 | .21075D-16 716 179

8 | .97194D-16 | 2704 338
16 | .12164D-16 | 8848 333
20 | .18796D-16 | 13580 679
32 | .49835D-16 | 37632 | 2352

40 | .21544D-15 | 58160 | 2908

Table 5.12 Multi-directional search on z7z with
step tolerance ¢ = 0.10D-07



step function

tolerance f(v3) calls
| —
| .10D-01 | .16538D+01 80
.10D-02 | .16459D <01 160

| .10D-03 | .22155D-01 98800
.10D-04 | .27790D-04 | 159857
.10D-05 | .14400D-07 | 161474
.10D-06 | .47005D-11 | 16177

-10D-07 | .45073D-13 | 161912

Table 5.13 Steepest descent on extended Rosenbrock function with n = 16

step function
tolerance f(v3) calls
.10D-01 | .16114D+01 90
.10D-02 | .25461D-03 503
.10D-03 | .13001D-06 | 392
.10D-04 | .85994D-09 762
.10D-05 .13750D-09 861
.10D-06 | .13596D-09 896
.10D-07 | .40865D-14 1228

Table 5.14 Quasi-Newton method on extended
Rosenbrock function with n = 16



step function the angle between

tolerance f(v3) calls -V f(v?) and the search direc:ion
-10D-01 | .35419D-02 2999 89.331667319177

.10D-02 | .35354D-02 3077 89.650748831041 |
.10D-03 | .35354D-02 3159 94.399435839573

.10D-04 | .35354D-02 3249 93.492650826296

.10D-05 | .33346D-02 3370 91.759887037185

.10D-06 | .35346D-02 3449 91.050583068438

.10D-07 | .33345D-02 3550 88.185598124193

Table 5.15 Nelder-Mead with noise on z7z with n = 16

step function calls
tolerance fl(vg) actual effective
.10D-01 | .12469D-03 | 4176 261
.10D-02 | .88067D-04 | 4384 274
.10D-03 | .88067D-04 | 4480 280
.10D-04 | .88067D-04 | 4608 288
.10D-05 | .88067D-04 | 4704 294
.10D-06 | .87835D-04 | 4816 301
.10D-07 | .87835D-04 | 4944 309

Table 5.16 Multi-directional search with noise on z7z with n = 16



step function

tolerance f(v3) calls
—

| .10D-01 | -.36422D-04 204
| .10D-02 | -.35780D-04 222
| .10D-03 | .38304D-02 72
.10D-04 | -.37355D-04 245
.10D-05 | -.49252D-04 250
.10D-06 | -.T1361D-04 216
.10D-07 | -.94555D-04 183

Table 5.17 Steepest descent with noise on zTz with n = 1§

step function
tolerance f(v3) calls
.10D-01 | .38179D-02 69
.10D-02 | -.14000D-04 186
-10D-03 | -.74024D-04 205
.10D-04 | -.50811D-04 313
.10D-05 | .13134D-02 263
.10D-06 | -.85300D-04 263
.10D-07 | .48307D-03 387

Table 5.18 Quasi-Newton method with noise on z7z with n = 16



Chapter 6

Future research

Before we discuss where we would like to go next, let us recall where we have been.
We have accomplished the foilowing:

o We have developed a new. simple, robust direct search algorithm.
e We have derived a convergence theorem for the new algorithm.

e We have determined how the Nelder-Mead simplex algorithm fails on large
problems.

But this list also points to work that remains to be done. As we noted in Chapter 3,
while the multi-directional search algorithm has several attractive features, it requires
further refinement before it is efficient enough to be considered a competitive algo-
rithm. There are numerous directions to explore. First, we have only just begin
to explore the potential of the algorithm when impiemented on parallel machines.
Second, we have a weaith of ideas to pursue in an effort to both speed up the progress
of the algorithm and to extend its applicability. Many of these improvements were
discussed in Chapters 4 and 3. We are also interested in tackling more difficult prob-
lems; for instance, problems where the function is not differentiable. Thus, we have
several ideas for dealing with such cases.

The convergence theorem for the multi-directional search algorithm has suggested
several interesting research directions. First, we believe the convergence proof can
be modified to handle the case where the function is not differentiable. Second, we
believe that the convergence result can be developed into a convergence theory for an
entire class of direct search algorithms. We believe that the same observations that
helped us identify how the Nelder-Mead simplex algorithm fails on large problems
will also help us determine why the Nelder-Mead simplex algorithm fails. This is of
interest to us since the adaptive properties of the Nelder-Mead simplex algorithm
clearly give it a competitive edge over the multi-directional search algorithm when
the dimension of the problem is no more than four. If we understood why the search

(31}



breaks down in higher dimensions. and could insure that t
we might be able to adopt some of these properties to
dimensional search aigorithm. Finall

his breakdown did 10t oceur,
speed the progress of :he multi-
¥, the convergence theorem demonstrated :h

that
without resorting
ike to understand both Wiy this
her unconstrained optimization

the multi-directionai search algorithm enforces step leagth control
to the Armijo-Goldstein- Woife conditions. We would |
i3 30 and how it relates to the existing theory for ot
methods.

We will now discuss severa] of these topics in further detail

6.1 Refining the algorithm
8.1.1 Parallelism

As it currently stands. the parallelism in the multi-directjonal search algorithm is
straightforward. The algorithm reduces to four DQ loops that can be executed in par-
allel: the loop to initialize the procedure and the three loops for each of the reflection,
expansion. and contraction steps. (See the formal statement of the algorithm given
in Section 2.3.) We have got vet addressed the issue of load balancing. So far we
have ignored processors that may be idle during the course of the computation. as our
results in Chapter 3 should make clear. The proof of our convergence theorem. how-
ever, has given us several ideas for improving the performance of the multi-directionaj
search algorithm on parallel machines.

Returning to the convergence theorem, note that we only require simple decrease:
the function value of one of the new vertices must be better than the function value
at the best vertex. We systematically search in n linearly independent directions
because if f is differentiable, one of these search directions is guaranteed to produce a
direction of descent. However, as soon as the algorithm identifies a vertex that has a
function value that is better than the function value at the best vertex, the search can
be stopped. This observation has led us to the following load balancing strategies,
given p available processors:

First, assume that n > p. Begin the iteration by searching in p directions. If one
of the vertices returns a function value that is better than the function value at the
best vertex, then the algorithm can stop the search, update all relevant information
and go on to the next iteration — there is no need to search in all n directions. If
none of the p trial vertices can replace the current best vertex, choose P more search
directions from the set of n search directions. The search continues in this way until



i

either the best vertex is replaced. or all n search directions have been considered.
Clearly some care must be taken in choosing the order in which the n Possibie search
directions are considered. Ideally, we would like to limit the search to the first p
directions considered at each iteration, but we must also be careful to cycle through
the directions so that the algorithm does not simply minimize over a subspace. One
important point to make is that if we can find reasonable strategies for determining
the order of the search directions. we may have an algorithm that is also usefy] on
sequential machines — p simply equals one.

There is still the possibility that we must search in all n directions, and that
(n mod p) # 0. This is similar to the situation we face when n < p. We believe
a careful use of the *speculative’ function evaluation approach may help overcome
this shortcoming. The “speculative” function evaluation approach to load balancing
advocates the calculation of function values before it is clear that they will be required,
so that they are already available should they be needed.

Our use of speculative function evaluation is based on the observation, first made
in Chapter 3, that given an initial simplex we can predict a priori the points which
the algorithm might visit — not only for the current iteration, but in subsequent
iterations as well. We demonstrated this process in Figures 3.4-3.8. We must be
careful to note, however, that for the sake of the convergence proof we assumed that
there exists a lower bound on the length of the edges in the simplex when. in fact.
no such bound exists. We can, nonetheless, predict in advance the points that will
be visited in subsequent iterations. Now, however, the number of points in the grid
is countably infinite, rather than finite, because we no longer have a fixed mesh size.
~ To insure load balancing when either (n mod p) # 0 or n < p, we anticipate
the points that the algorithm is likely to visit next and use all “extra” processors
to compute the function values at some subset of these points. We plan to develop
strategies to decide which points should be considered first.

Two remarks should be made here. First, we do not need an explicit representation
of the gradient either to determine a search direction or to decide if we have satisfied a
sufficient decrease condition. The set of search directions is determined by the initial
simplex and the algorithm only requires simple decrease in the function value at the
best vertex. Thus, we do not require O(n) function evaluations at each iteration
before we can begin the search. Second, precisely because we can predict all the
points the algorithm might consider, we can “start” the next iteration before we have
actually finished the current iteration. Thus, we can develop strategies that use O(p)



(s)

function evaluations at each iteration, which means that w

e shouid be able 10 make
better use of parallel machines.

The fact that the algorithm ouly requires simple decrease leads us o one
balancing issye. Usually we assume that all function evaluation rout
same amount of time to compute the function value. For

Jnal load
ines require the
the test problems we used

ordinary differential equation. This means that the time required for each function

v. However, since we only require sim

ple decrease,
which need not necessarily be the greatest decrease,

a3 soon as we have found a3
replacement for v} we can stop the computation and proceed immediately to the

next iteration. Again. this should lead to better overal] use of the available processing
power.

8.1.2 Performance on non-differentiable and non-convex problems

We are interested in finding ways to handle prodlems that do not satisfy the assump-
tions required for our theoretical results. If we relax the differentiability assumption.
the algorithm might get trapped in “bad” directions: i.e., it might not

find a descent
direction. When the function is not convex, the algorit

hm may still converge to a

stationary point, but the statio:{ary point may be a saddle point rather than a minj-

mizer. [n both cases, the method is hampered by the choice of the starting simplex.
As we have made clear, the choice of the initja] simplex will have a profound effect on
the performance of the algorithm, since the search directions are chosen from a finite
set of fixed search directions determined by the simplex used to start the procedure.
Since some important problems are not differentiable or not convex, we would like
to develop practical alternatives for overcoming an unfortunate choice of a starting
simplex.

Differentiability clearly plays a key role. We have found simple examples for which
the algorithm converges to a point that is not a local minimizer but at which the func-
tion is not differentiable. Assume the best vertex vg is at a point where the function
is not differentiable. Then, even if the n search directions are linearly independent
We cannot be certain that at least one of the edges identifies a directjon of descent.
The search might then be “stuck” and the answer returned by the algorithm may



9

be vé. If v} is not a minimizer, there are directions for which descent js guaranteed.
The problem is that the algorithm did not identify one of these directions. The same
sort of difficulty can occur when the function is not convex. We have construcred
an example in which the best vertex v is a saddle point and nome of the search
directions lie in a direction of negative curvature. Again the search is stuck and the
answer returned by the algorithm will be vE, which is a stationary point but not a
minimizer of the function. We would like to be able to recover in such instances by
automatically generating a new simplex to give a new set of search directions. Einber
“sidestepping” or estimating curvature information may help generate new simplices,
and thus new sets of search directions, when these difficulties are encountered.

Sidestepping

Our first idea involves “sidestepping” the difficulties mentioned above, Instead of
halving the step lengths repeatedly, the algorithm could take a step in the n -1
dimensional (affine) subspace defined by the face of the simplex that includes all but
the best vertex. The new face returned by this step would then replace the one in
the original simplex. This would change the original shape of the simplex. but it
would also give the procedure a new set of search directions. Sidestepping appears
to preserve one of the important features that allows us to prove convergence for
the multi-directional search algorithm. We would like to see if this extension can be
included in our existing convergence theory. We would also like to see how well this
idea performs in practice.

Estimating curvature information

Our second idea begins with the observation that, in some sense, the parallel algo-
rithm implicitly approximates the gradient. While the algorithm does not explicitly
compute finite difference approximations to the gradient, the algorithm instead con-
siders a natural alternative: at every iteration it explores each direction in a set of
n linearly independent search directions. The multi-directional search could then be
viewed as an implicit finite difference approximation, in a different basis, to the gra-
dient. The problem, particularly when dealing with functions that are not convex,
is that the algorithm does not have any curvature information. To overcome this
difficulty, we would like to approximate curvatire information at the point returned
by the algorithm. This issue has already bee:i considered both by Spendley, Hext,



-
and Himsworth (32] and bv Nelder and Mead [24]. These researchers were interesteqd
in constructing the Hessian matrix at the minimizer in order to produce the variance. wm
covariance matrix of the estimates. We are interested in pursuing this idea becayse
we think we can use curvature information to construct automatic restart strategles.
One possibility would be to use the Hessian to construct a new simplex with the edges
oriented along the axes of a quadratic model of the function. This would determine
a new set of search directions. [deally, these search directions would better suit the ™
particular problem. )
Estimating curvature information would also allow us to explore a different appii- s

cation of the parallel algorithm. If we can furnish an approximation to the Hessian.
we can start a.Newton-like procedure. This suggests an interesting tie to work be-
. : , - - C o . -
gin done on inverse problems by Williamson [37]: since the multi-directional searca
algorithm does not require a great deal of accuracy in the function evaluations. it
could be used as the first stage in an approach to solving inverse problems. Once the
multi-directional search has identified the neighborhood of a solution, the search could
then switch to the Newton-like methods developed for inverse problems. The paral-

-
lel direct search algorithm has the advantage of being relatively inexpensive but the
Newton-like methods have fast local convergence properties. This scheme is designed
to exploit both of these advantages. -
6.2 Extending the theoretical results -
6.2.1 Generalizations of the convergence theorem

The convergence theorem for. the multi-directional search algorithm exploited two
special features of the algorithm: that the algorithm searches over a finite set of fixed
search direction and that the rescaling factors which determine the step sizes are fixed. ™
There are several sequential direct search methods for which the same features hold,

in particular, the pattern search algorithm of Hooke and Jeeves (17] and evolutionary =
operation, in its simplest form, as first proposed by Box [2].

We could view the simplex used in the multi-directional search algorithm as the
“pattern” used to generate both the directions of search and the size of the steps.
Other methods in this class :;.imply use other “patterns” to determine the directions
of search and the size of the steps, but the structure underlying these methods is the ™
same. We thus believe we can develop a general convergence theory for this class of
direct search methods, without modifying these algorithms. We know of no equivalent



-

51

convergence theory for this class of direct search methods. We have recently become
aware of a similar effort by Wen-ci (35], (36]. However, his convergence apaj

vsis
requires a notion of sufficient decrease which it is not clear can be implemented in
practice. His theory also cannot be extended to cover the multi-directionaj search

algorithm because it requires the step size to be monotonically decreasing, which
does not hold for the muiti-directional search algorithm if expansion steps are allowed.
On the other hand. it appears that our convergence theory can be extended to the
variants Wen-ci proposes for both the pattern search algorithm of Hooke and Jeeves
and the original simplex method of Spendley, Hext, and Himsworth. Céa [10] also
gives a convergence result for a variant of the pattern search algorithm of Hooke and
Jeeves, but he requires that the step sizes be strictly monotonically decreasing at
every iteration — a modification we believe would be unsatisfactory in practice.
Finally, we believe that the convergence theorem can be extended to cover the
non-differentiable case. Instead of convergence to a statidna.ry point, we may be able

to show convergence to a critical point, with few major modifications of the proof.

8.2.2 Exploring step size requirements

The convergence result we have for the multi-directional search algorithm raises an
intriguing theoretical question. The step size rule of the parallel algorithm is rem-
iniscent of the step size rule of the trust region methods. Both methods only re-
quire simple decrease on the value of the objective function; neither requires that
the Armijo-Goldstein-Wolfe conditions be satisfied. Both methods employ a simple
backtracking strategy to ensure that the step is not too short: steps are typically
halved, but only until a point that produces decrease in the ébjective function value
is found. Neither method safeguards against taking a step that is too long relative
to the amount of decrease in the objective function — the other half of the Armijo-
Goldstein-Wolfe conditions — and yet in neither case is this condition necessary to
prove convergence. This is markedly different from the standard convergence results
for line search methods. We would like to explore the relationship between the step
size rule for the multi-directional search algorithm and the step size rule for the trust
region methods to see what features they may share. The answer may shed new light
on the way we view line searches.



Bibliography

(1] Mordecai Avriel. NVonlinear Programming: Analysis and Methods. Prentice-Hall,
Inc., Englewood Cliffs. New Jersey, 1976.

[2] George E. P. Box. Evolutionary operation: A method for increasing industrial
productivity. Applied Statistics, VI1(2):81-101, June 1957.

[3] M. J. Box. A comparison of several current optimization methods, and the use

of transformations in constrained problems. The Computer Journal, 9(1):67-77,
May 1966.

(4] M. J. Box. D. Davies. and W. H. Swann. NVon-Linear Optimization Techniques.
ICI Monograph No. 3. Oliver & Boyd, Edinburgh. 1969.

(5] Gregory F. Brissev, Robert B. Spencer, and Charles L. Wilkins. High-speed aigo-

rithm for simplex optimization calculations. Analytical Chemistry, 51(13):22935-
2297, November 1979.

(6] Samuel H. Brooks and M. Ray Mickey. Optimum estimation of gradient direction
in steepest ascent experiments. Biometrics. 17:48-56, March 1961.

(7] K. W. C. Burton and G. Nickless. Optimisation via simplex: Part i. background,

definitions and a simple application. Chemometrics and Intelligent Laboratory
Systems, 1:135-149, 1987.

(8] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. Using parallel function evaulations
to improve Hessian approximations for unconstrained optimization. Technical
Report CS-CU-361-87, University of Colorado, 1987.

(9] R. H. Bvrd, R. B. Schnabel, and G. A. Shultz. Parallel quasi-Newton methods

for unconstrained optimization. Technical Report CU-CS-396-88, University of
Colorado, 1988.

(10] Jean Céa. Optimisation : théorie et algorithmes. Dunod, Paris, 1971.

82



[11]
[12]

(13]

[14]

[16]

[17]

18]

[19]

[20]

33

D. H. Chen, Z. Saleem. and D. W. Grace. A gew simplex procedure 7or fypne.
tion minimization. [nternational Journal of Modelling & Simulation, 6(3):31-353.
1986.

Thomas F. Coleman and Guangye Li. Solving systems of nonlinear equ

juations
On a message-passing muitiprocessor. Technical Report CORR 87

-39, Faculty of
Mathematics. University of Waterloo, December 1987.

Stanley N. Deming and Stephen L. Morgan. Simplex optimization of variables
in analytical chemistry. Analytical Chemistry, 45(3):278 A-283 A, March 1973,

J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1983.

J. E. Dennis, Jr. and D. J. Woods. Optimization on microcomputers: The
Nelder-Mead simplex algorithm. In Arthur Wouk, editor, New Computing En-

vironments: Microcomputers in Large-Scale Computing, pages 116-122. SIAM.
Philadelphia, 1987.

Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization.
Academic Press, London, 1981.

Robert Hooke and T. A. Jeeves. “Direct search” solution of numerical and statis-
tical problems. Journal of the Association for Computing Machinery, 8(2):212-
229, April 1961.

S. L. S. Jacoby, J. S. Kowalik, and J. T. Pizzo." [terative Methods for Nonlinear
Optimiéat:'on Problems. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1972.

Richard D. Krause and John A. Lott. Use of the simplex method to optimize
analytical conditions in clinical chemistry. Clinical Chemistry, 20(7):775-782,
1974.

Guangye Li and Thomas F. Coleman. A new method for solviﬁg triangular
systems on a distributed memory message-passing multiprocessor. Technical
Report CS-87-812, Computer Science Department, Cornell University, 1987.



(L)
I

(21] Guangye Li and Thomas F. Coleman. A parallel triangular soiver ‘or a dis-
tributed memory multiprocessor. SIAM Journal on Scientific and
Computing, 9(3):485-302. May 1988.

Statistical

(22] Jorge-J. Moré. Burton S. Garbow, and Kenneth E. Hillstrom. Testing uacon-

strained optimization software. AC) Transactions on Mathematical Software,
T(1):17-41. March 1981.

(23] Stephen L. Morgan and Stanley N. Deming. Simplex optimization of analvtical

chemical methods. Analytical Chemistry, 46(9):1170-1181. August 1974,

(24] J. A. Nelder and R. Mead. A simplex method for function minimization. The
Computer Journal. 7(4):308-313. January 1965.

[25] J. M. Ortega and W. C. Rheinboldt, [terative Solution of Nonlinear Equations
in Several Variables. Academic Press, New York, 1970.

(26] J. M. Parkinson and D. Hutchinson. An investigation into the efficiency of
variants on the simplex method. In F. A. Lootsma. editor, Numerical Vethods

for Non-linear Optimization. pages 115-135. Academic Press, London and New
York, 1972.

[27] M. J. D. Powell. An efficient method for finding the minimum of a function of sev-

eral variables without calculating derivatives. The Computer Journal, 7(2):135-
162, July 1964.

[28] G. L. Ritter, S. R. Lowry, C. L. Wilkins. and T. L. Isenhour. Simplex pattern
recognition. Analytical Chemistry, 47(12):1951-1936, October 1975.

(29] H. H. Rosenbrock. An automatic method for finding the greatest or least value
of a function. The Computer Journal, 3(3):175~184, October 1960.

(30] M. W. Routh, P. A. Swartz, and M. B. Denton. Performance of the super
modified simplex. Analytical Chemistry, 49(9):1422-1428, August 1977.

[31] R. B.Schnabel. Concurrent function evaluations in local and global optimization.
Computer Methods in Applied Mechanics and Engineering, 64:537-552, 1987.

(32] W.Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of simplex
designs in optimisation and evolutionary operation. Technometrics, 4(4):441-
461, November 1962.



(¥ 3]
(]

(33] W. H. Swann. Direct search methods. In W. Murray, editor, Numericq; Meihods

for Unconstrained Optimizations. pages 13-28. Academic Press. London and New
York, 1972.

[34] D. A. Walmsley. The simplex method for minimisation of a general functiop. Sup-
plementary Report 636. Assessment Division, Traasport Systems Department,

Transport and Road Research Laboratory, Crowthorne, Berkshire, 1981,

(35] Yu Wen-ci. The convergence property of the simplex evolutionary techniques.
Scientia Sinica. Special [ssue of Mathematics(1), 1979.

(36] Yu Wen-ci. Positive basis and a class of direct search techniques. Scientia Sinica,
Special Issue of Mathematics(1), 1979.

[37] K. A. Williamson. Parameter [dentification in Systems of Ordinary Differential
Equations. PhD thesis. Rice University, Houston, Texas, 1990. In preparation.

(38] Daniel J. Woods. An Interactive Approach for Solving Multi-Objective Optimiza-
tion Problems. PhD thesis. Rice University, 1985.

(39] Willard 1. Zangwill. Minimizing a function without calculating derivatives. The
Computer Journal, 10(3):293-296, November 1967,






